This microfiche was
- produced according to
ANSVAIIM Standards
and meets the
quality specifications
contained therein. A
poor blowback image
IS the result of the
characteristics of the
original document.

NASA Conference Publication 3340, Vol. Il

Fifth NASA Goddard
Conference on

Mass Storage Systems
and Technologies

Volume Il

Proceedings of a conference held at
the Universiry of Maryland

University College Conference Center
College Park, Maryland

September 17 - 19, 1996

&

NASA Conference Publication 3340, Vol. |l

Fifth NASA Goddard
Conference on

Mass Storage Systems
and Technologies

Volume |l

Edited by

Benjamin Kobler

Goddard Space Flight Center
Greenbelt, Maryland

P. C. Hariharan
Svstems Engineering and Security, Inc.
Greenbelt, Maryland

Proceedings of a conference held at
the University of Maryland

University College Conference Center
College Park, Maryland

September 17 - 19, 1996

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

1996

Fifth Goddard Conference on Mass Storage
Systems and Technologies

Program Committee

Ben Kobler, NASA Goddard Space Flight Center (Chair)
Jean-Jacques Bedet, Hughes STX Corporation

John Berbert, NASA Goddard Space Flight Center

Jimmy Berry, Department of Defense

William A. Callicott, Consultant

Sam Coleman, Lawrence Livermore National Laboratory
Robert Creecy, Census Bureau

Charles Dollar, University of British Columbia

Fynnette Eaton, National Archives and Records Administration
P C Hariharan, Systems Engineering and Security, Inc.
Bernard O'Lear, National Center for Almospheric Research
Sanjay Ranade, /nfotech SA, inc.

Bruce Rosen, National Institute of Standards and Technology
Don Sawyer, NASA Goddard Space Flight Center

Peter Topoly, National Oceanographic and Atmospneric Administration

Production, Copy Editing, and Layout

Len Blasso, Media Specialist Associates

This publication is available from the NASA Center for AeroSpace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Preface

The Fifth Goddard Conference on Mass Storage Systems and Technologics has
attracted more than forty papers which are included in these Proceedings. We plan to
include audio and video and, if available, text and viewgraphs from the invited papers and
the panel discussion in a CD-ROM which will be published before the end of 1996.

A paper on application progran: ning interfaces (APD for a physical volume
repository (PVR) defined in Version S of the IEEE Refercnce Model (RM) for Open
Storage Systems is indicative of ongoing activity to flesh out the RM. However, there
still remain a number of other interfaces in the RM which lack APIs. A number of
agencies have already deployed petabyie-sized archives with custom FSMS since there
arc no standards yet, and so there are no COTS softwarc modulcs which can bhe
combined/integrated to provide file and storage management services. A user panel will
discuss the problcms and issues associated with available software and, it is hoped, will
lay out the desiderata which experience has shown is required for the management of
large archives.

Storage architecture, database management and data distribution are covered in
three sessions. The future of recording is not necessarily a mix of optical and magnetic
technology; as the paper by Stutz and Lamartine shows, microchisels are around the
comer, and may provide a solution to the problem of technology obsolescence which has
been exacerbated by the ever shorter product development and life cycles. Optical
tecchnology is updated by papers from the Air Force’s Rome Laboratory, and from LOTS
Technology.

File system performance and modcling are dealt with by a number of authors, and
there are progress reports on the definition and use of metadata in archives.

Descriptions of specific archives and storage products have been moved this ycar
to a poster session. Storage vendors will have a special session where they can explain.
elaborate and extol their particular solutions.

We are grateful to the members of the Program Committee:

Jean-Jacques Bedet, Hughes STX Corporation

John Berbert, National Aeronautics and Space Administration
Jimmy Berry, National Security Agency

Bill Callicott, consultant

Sam Coleman, Lawrence Livermore National Laboratory
Robert Creecy, Census Bureau

Charles Dollar, University of British Columbia

Fynnette Eaton, National Archives and Records Administration
Bernie O’Lear, National Center for Atmospheric Research
Sanjay Ranade, Infotech SA

iii

Bruce Rosen, National Institute of Standards and Technology
Don Sawyer, National Aeronautics and Space Administra‘ion
Peter Topoly, National Ocearic and Atmospheric Administration

for their diligence in identifying the topics and securing the excellent papers for this
conference.

We also record our thanks to:

John Otranto, Systems Engincering and Security, Inc for help with some of the figures;
Len Blasso, Media Specialist Associates, for editing and layout; Jorge Scientific
Corporation for logistics support.

P C Hariharan
Systems Engineering & Security, Inc
Greenbelt MD 20770-3523

Ben Kobler

NASA Goddard Space Flight Center
Greenbelt MD 20771-1(0(X)

iv

Table of Contents

Volume 1

Derived Virtual Devices: A Secure Distributed File System Mechanism, Rodney
Van Meter, Steve, Hotz, and Gregory Finn, University of Southern California 1

Cooperative, High-Performance Storage in the Accelerated Strategic Computing Initiative.
Mark Gary, Barry Howard, Steve Louis, Kim Minuzzo, and Mark Seager, Lawrence
Livermore National Laboratoryc.ooieiiieceuineeeeenieeeesaetaeeeassisseneeeen e eeneas 21

An MPI-10 Interface to HPSS, Terry Jones, Richard Mark, Jeanne Martin, John
May, Elsie Pierce, and Linda Stanberry, Lawrence Livermore National Laboratory.................. 37

A Proposed Application Programming Interface for a Physical Volume Repository,
Merritt Jones, MITRE Corporation: Joel Williams, Systems Enginc-ring and Security;

and Richard Wrenn, Digital Equipment Corporation.............................ccocccccuvvvnvecnnvnncnnnnn 51
A Global Distributed Storage Architecture, Dr. Nemo M. Lionikis and Michael F. Shields.
Department Of Defensecooniniiieneenesenens e sesies e seeeeeasiasenss estestesens et ee s essase et 67
Pctabyte Class Storage at Jefferson Lab (CEBAF), Rita Chambers and Mark Davis,

Jefferson Lab Computer Centeroooeeiieiinienieniieeiee sttt ceseessesiesassaneemsasaeaseesnaeseans 77
DKRZ Workload Analysis, Hartmut Fichtel, Deutsches Klimarechenzentrum

GIMBHooooviirieeiiieceieeeeeetieie et e e e s s es st saa e e b e s abas e sras e e st sa e s se e e nesaeesaen Senbastessaesbbesteessrensestans 91
A New Generic Indexing Technology, Michael Freeston, University of California 99
Advanced Optical Disk Storage Technology, Fred N. Haritatos, Rume Laboratory.................. 121

Is the Bang Worth the Buck? A RAID Performance Study, Susan E. Hauser, Lewis E.
Berman, and George R. Thoma, National Library of Medicinec..cccouvunvnnniiinninn. 131

The Medium is NOT the Message OR Indefinitely Long-Term File Storage at Leeds
University, David Holdsworth, Leeds URIVersity...................ccovviieiiiievioiieieneccisiscesiiee 141

Analysis of the Access Patterns at GSFC Distributed Active Archive Center, Theodore
Johnson, University of Florida; Jean-Jacques Bedet, Hughes STX Corporatio......................... 153

A Media Maniac's Guide to Removable Mass Storage Media, Liada S. Kempster, IIT
ReSEarch INSHIULEc.oooeiviiiieeree et bbb st ar e s 179

The Cornerstone of Data Warehousing for Government Applications, Doug Kenbeek and
Jack Rothschild, EMC Corporationuiouercoinnieiinnaseesiessesssisessensssaesessesssoseensenns 191

Incorporating Oracle On-Line Space Management with Long-Term Archival Technology,
Steven M. Moran and Victor J. Zak, Oracle Corporation.....................c.ecvevenrecreeunnns 209

Design and Implementation of Scalable Tape Archiver, Toshihiro Nemoto, Masaru
Kitsuregawa, and Mikio Takagi, University of Tokyoccoevvninninccnenroeneininene 229

Long-Term Archiving and Data Access: Modelling and Standardization, Claude Huc,
Thierry Levoir, and Michel Nonon-Latapie, French Space Agency...................cveececcennnnns 239

Automated Clustering-Based Workload Characterization, Odysseas I. Pentakalos,
NASA Goddard Space Flight Center; Daniel A. Menasce, George Mason University;
Yelena Yesha, University of Marylandocccoecoiivciviiniinininiiniinsscceee 253

Digital Optical Tape: Technology and Standardization Issues, Fernando L. Podio,
National Institute of Standards and Technology......................ccoeeruivurcinniiciiininceiiniscenennn, 265

Storage and Network Bandwidth Requirements Through the Year 2000 for the NASA
Center for Computational Sciences, Ellen Salmon, NASA Goddard Space Flight Center......... 273

NASDA's Earth Observation Satellite Data Archive Policy for the Earth Observation
Data and Information System (EOIS), Shin-ichi Sobue, Osamu Ochiai, and Fumiyoshi
Yoshida, ASDA EOCminecaeinreiesvesieisses ettt e satsse st sresbe s enneshabsanas 287

Progress in Defining a Standard for File-Level Metadata, Joe! Williams, Systems
Engineering and Security; Ben Kobler, NASA Goddard Space Flight Center........................... 291

vi

Table of Contents

Volume 11

Development of Secondary Archive System at Goddard Space Flight Center
Version O Distributed Active Archive Center, Mark Sherman, John Kodis.
Jean-Jacques Bedet, and Chris Walker, Hughes STX; Joanne Woytek and Chris Lynnes,

NASA Goddard Space Flight Center................comiimiiiissss s 301--/
The Global File System, Steven R. Soltis, Thomas M. Ruwart, and Matthew T. O'Keefe, o
University 0f MIRNeSOUcoceumrninmsecireccineccneieeie s inssssessssssssssssssssssssssssssssesssss e sss 3 19

Distributed Large Data-Object Environments: End-to-End Performance Analysis of

High Speed Distributed Storage Systems in Wide Area ATM Networks, William Johnston,

Brian Tierney, Jason Lee, Gary Hoo, and Mary Thompson, Lawrence Berkeley

NGHONAL LAPOTGIOTY............ccovciiricienerenicenctnii et st e s s 343 °

Understanding Customer Dissatisfaction with Underutilized Distributed File
Servers, Erik Riedel and Garth Gibson, Carnegie Mellon Universilty.................ooivevinennnnn. 371

Mass Storage and Retrieval at Rome Laboratory, Joshua L. Kann;
Brady W. Canfield, Capt, USAF; Albert A. Jamberdino; Bernard J. Clarke, Capt, USAF;

Ed Daniszewski; and Gary Sunada, Lt., USAF, Rome Laboratorycueeveveennnn, 389
Durable High-Density Data Storage, Bruce C. Lamartine and Roger A. Stutz, Los Alamos ol
NAHORAL LADOTAIOTY.............onocvieiriveicieicinnitciiiniiis ettt sbe s b s s ssbabes e 409

A Note on Interfacing Object Warehouses and Mass Storage Systems for Data

Mining Applications, Robert L. Grossman, Magnify, Inc., Oak Park, IL; University of ./
Hllinois at Chicago, Dave Northcutt, Magnify, Inc...............coooooiiinnnininininnnnee 421
Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte

Archives, Reagan Moore, Richard Marciano, Michael Wan, Tom Sherwin, Richard Frost
San Diego Supercomputer CeRIEr............vveiiiitivinirivinrissis st e 431
The Challenges Facing Science Data Archiving on Current Mass Storage Systems, Bernard

Peavey and Jeanne Behnke, Goddard Space Flight Center..................ccocooovviniivniiniininnninnns 449 /

Processing Satellite Images on Tertiary Storage: A Study of the Impact of Tile Size on
Performance, JieBing Yu and David J. Dewitt, University of Wisconsin-Madison.................... 460

vii

Evolving Requirements for Magnetic Tape Data Storage Systems, John J. Gniewek, IBM

COTPOTALION. ...ttt e ettt b s b te st bt se st st se s e e s a1/
Optimizing Input/Output Using Adaptive File System Policies, Tara M. Madhyasta, .
Christopher L. Elford, and Daniel A. Reed, University of Hlinois........................ccoocuvvne...... 493 1 <
Towards Scalable Benchmarks for [ass Storage Systems, Ethan L. Miller. University of

Maryland Baltimore COUNLY.................ccccooeeieievieerieinieieeeeees e esess et eeee O 1S
Queuing Models of Tertiary Storage, Theodore Johnson, University of Florida....................... 529
/O-Efficient Scientific Computation Using TPIE, Darren Erik Vengroff. University of)
Delaware; Jeffrey Scott Vitter, Duke URIVersity...............ccoconveiiincniininnininiicneessnsnnense s 553
Progress Toward Demonstrating a High Performance Optical Tape Recording Technology,

W. S. Oakley, LOTS Technology, INc...............iiiicnnnniiiiniiiinciiiiesisie e 571
RAID Disk Arrays for High Bandwidth Applications, Bill Moren, Ciprico, Inc........................ 583 7
RAID Unbound: Storage Fault Tolerance in a Distributed Environment, Brian Ritchie, -
Alphatronix, Incorporated..........................ocoviiiiiimiiiiii st 589 -
SAM-FS-- LSC’s New Solaris-Based Storage Management Product, Kent Angell, LSC, Inc....593 o
Use of HSM with Relational Databases, Randall Breeden, John Burgess, and Dan Higdon,)
FileTek, INCOTPOTAIEd.....................ccoceneeiiiieiiieiiiieseie et ettt en b st sranae s eneae e enan 601 ~--° -
RAID S Technical Overview: RAID 4 and 5-Compliant Hardware and Software

Functionality Improves Data Availability Through Use of XOR-Capable Disks in an _
Integrated Cachcd Disk Array, Brett Quinn, EMC Corporation..................c.cccocvveevnivierannn.. 605 ~- f

Large Format Multifunction 2-Terabyte Optical Disk Storage System, David R. Kaiser. .
Charles F. Brucker, Edward C. Guge, T.K. Hatwar, George Q. Simmons, Eastman Kodak......627 ~ < “

viii

NEXT
DOCUMENT

Development of Secondary Archive System
at Goddard Space Flight Center Version 0 Distributed Active Archive Center

Mark Sherman, John Kodis, Jean-Jacques Bedet, Chris Wacker
Hughes STX
7701 Greenbelt Road, Suite 400
Greenbelt, MD 20770
{sherman, kodis, bedet, wacker} @daac.gsfc.nasa. gov
301-441-4285 Fax (301) 441-2392

Joanne Woytek, Chris Lynnes
NASA/GSFC
Greenbelt Road
Greenbelt, MD 20771
{joanne,lynnes } @daac.gsfc.nasa.gov
301-286-4418

Abstract

The Goddard Space Flight Center (GSFC) Version 0 (V0) Distributed Active Archive
Center (DAAC) has been developed to support existing and pre Earth Observing System
(EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing
System Data and Information System (EOSDIS) concepts. To ensure that no data is ever
lost, each product received at GSFC DAAC is archived on two different media (VHS and
Digital Lincar Tape (DLT)). The first copy is made on VHS tape and is under the control
of UniTree. The second and third copies are made to DLT and VHS media under a
custom built software package named "Archer”. While Archer provides only a subsct of
the functions available with commercial software like UniTree, it supports migration
between near-line and off-line media and offers much greater performance and flexibility
to satisfy the specific needs of a Data Center. Archer is specifically designed to
maximize total system throughput, rather than focusing on the tum-around time for
individual files. The Commercial Off the Shelf Software (COTS) Hierarchical Storage
Management (HSM) products cvaluated were mainly concerned with transparent,
interactive, file access to the end-user, rather than as a batch-oriented, optimizable (bascd
on known data file characteristics) data archive and retrieval system. This is critical
the distribution requirements of the GSFC DAAC where orders tor 5000 or more files at
a time are received. Archer has the ability to qucue many thousands of file requests and
to sort these requests into internal processing schedules that optimize overall throughput.
Specifically, mount and dismount, tape load and unload cycles, and tape motion are
minimized. This feature did not seem to be available in many COTS packages. Archer
also utilizes a generic tar tape format that allows tapes t¢ be rcad by many difterent
systems rather than the proprietary format found in most COTS packages. This paper
discusses some of the specific requirements at GSFC DAAC, the motivations for
implementing the Archer system, and presents a discussion of the Archer design that
resulted.

301

Introduction

One of the critical components within the DAAC's Data Archive and Distributed System
(DADS) is the HSM system. Several years ago, UniTrce was chosen as the best
candidate to satisfy the GSFC DAAC 's requirements providing both the basic HSM
functions and the device drivers for the planned robotic devices. After months of
integration and customization, UniTree reached some stability but it fell short of the
GSFC DAAC throughput requirements [1], and was limited in the configurability of the
archive, retrieval, and caching systems based on data-specific characteristics; e.g., size,
volume, likely reuse, multiple versions, etc. It also became apparent that this product
and other similar commercial products were aot fully suited for this domain of
application.

Archer is an in-house softwarc package that was developed by the GSFC DAAC to
provide management of secondary and tertiary backup copies of all datasets stored in the
archive. Archer was developed to remedy some of the major drawbacks of HSMs, such
as UniTree, in handling a data (vs. file) archival system In particular its design was kept
simple and tailorcd to handle data requests with large number of files and varying files
characteristics. Performance was a key consideration in the design of the system and its
higl.ly parallel distributed architecture allows the system to be scaled to much larger
archives. This paper starts by presenting an overview of the functionality needed for the
GSFC DAAC to be a fully operaticnal Data Center. The overall hardware architecture to
meet the needs of the GSFC DAAC is described, followed vy a discussion on what led
the GSFC DAAC o the development of Archer. The architectural design of Archer is
presented with its main features. Finally. the status, lessons learned, and future work are
briefly desctibed.

GSFC DAAC functions and architecture

The GSFC DAAC can be v-2wed as composed of threc main components which are a
Product Generation Syster. (PGS), an Information Management System (IMS), and a
Data / -chive and Distributior System (DADS). The PGS and IMS are respectively
associated with the production of higher level products and the catalog holdings searched
and browsed by researchers. The DADS controls the overall processes of the ingestion of
new data and the distribution of data requests. The migration between near-line and on-
line devices is handled by both UniTree and Archer, however only Archer has the full
capability to migrate media between near-line and off-line. For historical reasons,
UniTree is currently responsible for the primary archive. Secondary and a tertiary
archives, under the control of Archer, use respectively DLT and VHS as archive media.
The Metrum RSS-600 Automated Tape Library (ATL) with § RSP-2150 drives and 6/X)
VHS cass-ttes (for a total capacity of up to 8.7 TB) is shared by UniTree and the tertiary
archive. Most tapes in the ATL and four of the five VLIS drives are controlled by
UniTree. The secondary w:chive is composed of three DLT 7 cartridge stackers. Whiie

302

UniTree and the tertiary archive are run on an SG? “hallenge L, the secondary archive is
executed on an SGI Challenge S.

Two SGI 4D/440 workstations are being used to test new version of the DADS, IMS,
Archer software and new rcleases of UniTree. Having dedicated test machines is very
important to avoid affecting the day to day operation at the GSFC DAAC. Several SGI
machines arc also used to process Pathfinder Advanced Very High Resolution
Radiomcter (AVHHR) land products znd to perform Quality Assessment (QA) on new
products gencrated. Figure 1 and 2 and Table 1 illustrate some of main platforms
acquired by GSFC DAAC along with their specific functions.

GIFE ¥ EOSOS FEI LAK

GSFC YO EQSDIS E omat LAK

U — DECACS
0 Chatange L
264D Uawary
anesm P
v)
[13}

—(

hppf
(IR &

e

£790 99 Avtonus tage
Canrigs Sysvn
(Y
1 dohvm wnnt Sor cusTRiY
melng cuteie of Uni:e

Figure 1 GSFC DAAC 1996 Configuration as of 2/28/96 (1 of 2)

303

SRFL VO ECSDIS BN LAN

Figure 2 GSFC DAAC 1996 Configuration as of 2/28/96 (2 of 2)

Machine name

Function

Hardware description

EOSDADS

run UniTree & tertiary
archive

SGI Challenge L, 256 MB memory
4 R4400 CPUs (150 Mhz)

- Metrum RSS600 automatic library
- 32 GB UniTree stage disks

EOSBACK

run secondary Archive

SGI Challenge S, 64 MB memory
1 R4400 CPU (150 Mhz)
- DLT stackers

EOSDATA

un IMS and Oracle
Database

SGI Challenge L, 256 MB memory
4 R4400 CPUs (25() Mhz)

- 24 GB fip stage disks

- 275 GB anonymous ftp

EOSDADS2

run ingestion & distribution

SGI Challenge XL, 512 MB memory
4 R4400 CPUs (200) Mhz)

- 36 GB ingest staging disks

- 61 GB distribution staging disks

- 8mm drives

- 4mm drives

- 3480 drives

EOSTEST2

test software in acctest &
systest

SGI 4D/440 VGX, 256 MB memory
4 R3000 CPUs (40 Mhz)

304

EOSTEST test dads software & new | SGI 4D/440, 128 MB memory
version of UniTree 4 R3000 CPUs (40 Mh2)
- 8 GB UniTree cache
EOSQA Tun data proquct QA 'SGT indigo 2, 160 MB memory
I 1 R4400 CPU (150 Mhz)

Table 1. Hardware at the GSFC DAAC
Criteria for the development of a secondary archive

This paper now focuses on issues faced by the GSFC DAAC during the last two years
and some of the specific requirements that led to the development of a sccondary archive
system.

Over the years, the GSFC DAAC has faced prc s with the HSM system UniTree and
the archive media (VHS tapes and 12" WORM optical platters). In particular, UniTree
did not work very well when 12" WORM optical drives were working concurrently with
the VHS tape drives. Unitree also did not satisfy the general throughput requirements.
and proved difficult to configure bascd on evolving data characteristics and data request
profiles. While some issues have been resolved, others still remain open. Additionally.
occasional loss of data due to media failure, UniTree software failures, along with a
requircment from the Sea-vicewing Wide Field of View Sensor (ScaWiFS) project
necessitated the need to keep a second copy of all products. It became apparent that there
was an urgent need for a secondary data archive system that would hold a backup copy of
all data rcccived at the GSFC DAAC, would take over in case the primary system failed,
and if successful in increasing throughput, could be used as a primary retricval system
At the ime UniTree was not fully stable and the GSFC DAAC was under increasing necd
1o provide better, more rcliable data retrieval and a robust data recovery capability which
did not rely on the data provider to re-send lost data. The choices were cither to purchase
a second COTS product or to develop our own secondary data archival system. The data
archive system was intended to mostly store data to archive tapes, track file location and
tape utilization, and to handle both near-linc and off-line tapes. Most COTS packages
evaluated were deemed too sophisticated and expensive for the simple sct of requirements
that had been identified. Further, many of the COTS HSMs , which were oriented
towards transparcnt, interactive file retrieval functionality, did not seem to fully mect
these simple requirements. This was particularly true for automatic migration of media
between near-line and off-linc storage, and large, batch oricnted file/data requests. Our
experiences with the UniTree COTS package also pointed out other problems with
commercial HSMs, such as performance bottlenecks and maintainability issucs. For
these reasons, the decision was made that the GSFC DAAC would gain by developing its
own secondary data archive system. The remainder of this section focuses on some of the
criteria that were factored into the secondary archive design.

305

As mentioned above, UniTree was designed around limited, interactive file access which
imposed limitations that were undesirable for a large scale science data center. For
instance, UniTree limits the number of concurrent stage operations (around 100) which
causes major problems when large number of files are to be staged. Also, the order of
requesting and staging data, along with adequate feedback on both successful and
unsuccessful retrievals, are critical, both to achieve good performance, and to . implify the
media distribution process. For example, a request may need a set of files staged and
then copied to a number of 8mm tapes for distribution in the time order in which the data
was initially produced. The request would best be handled by staging in the time order to
be distributed, particularly if multiple distribution tapes will be neca. . Additiorally, in
a production environment it is not unusual to have unexpected hardware and software
problems or unexpected workloads that must be rectified manually. Therefore, it is
important to have full control over the archive, letting the system run by itself, but
allowing operators to take control of the system when needed. To provide flexibility and
adaptability to facilities with wic needed requirements and resources, HSMs should have
an Application Program Interface (API), which many commercial products either do not
provide or provide with very limited capabilities. It would be highly desirable to have
standardized APIs to facilitate transition to a new HSM when needed.

A key element of a typical data retrieval request submitted at the GSFC DAAC is the
need to stage, in one request, a large number of small files. Some HSMs tend to perform
poorly when several hundred or thousand of files need to be staged, even if the files
reside on few tapes. Other products put a limit (e.g. 100) on the number of stages that
can be submitted at once, reducing overall performance, requiring substantial software
design to properly handle the staging, and having a large impact »n the day to day
operations. On average, most of the files currently archived at the GSFC DAAC are
small (around 1 MB) while data requests range from a single file to several thousar filcs
at a time, resulting in a high penalty when retrieved from tapes. The overhead of the
pick, mount, load, search and rewind operations is high compared to the read/write
operation which may take only a few seconds for these small files. C -sequently, it is
critical to minimize the number of mounts and maximize, whenever possible, the amount
of files read/written per mount. It is therefore desirable 10 sort the order in which files are
transferred to and from tapes by which tape they are on and their position on the tape.
This may be achieved by knowing the physica! location of the files on tapes and then
writing software to request the files in that ordes. Unfortunately, this information is not
easily available in HSMs such as UniTree. To maximize system throughput, it is also
necessary to keep data transfer rates to/from the storage devices at nearly the limits
imposed by the hardware. Detailed analyses were done on the performance of the VHS
drives under UniTree, and it was shown that data transfer rates were substantially lcss
inside UniTree than those measured outside UniTree, cven with just a single drive

operating [1].

Performance s a key issue in an archive, but other considerations such as interoperability
are equally important. HSM vendors with their own proprietary formats make the

306

transition to another HSM very difficult and expensive. This can have disastrous
consequences if a vendor decided to stop marketing their products or to stop suppon of a
given hardware device, as was the case for UniTree and the Cygnet jukeboxes at the
GSFC DAAC. The situation worsens as the size of archives increases dramatically
(Petabytes). The GSFC DAAC also has a requirement to migrate all of its archived data
under the control of the Version 0 system to the next generation system. By storing the
data in a non-proprictary, generally used format such as tar, migration can be more casily
and quickly accomplished, since all that is required is to physically move the tapes io the
new system. The interoperability of the tapes can be resolved by having onc or several
standardized tape format(s). This is difficult to achieve when vendors disagree on the
merits of the formats and have already invested large amount of money in them. Another
approach may be to provide a mechanism for HSMs to recognize and read formats from
various vendors and do this without sacrificing performance. An important featurc that is
not always available is the ability to reconstruct the data base from the data itsclf. For
instance, UniTree data is useless without the UniTree data base. These problems have
been recognized and an Information and Image Management International (AIIM) File
Level Metadata for Portability of Sequential Storage Media group has been formed to
address some of these issues. This group met for the first time in April 1996, in Chicago,
linois.

Faced with storage requirements growing exponcntially and limited budget, it may he
necessary to store data off-line. This solution is even morc attractive in a data center
where many tapes are seldom requested. This feature scems to be ignored or is limited at
best with some HSMs. It is not sufficient to indicate that the tape is off-linc. At a
minimum the physical location of each off-line media should be known by the HSM and
operators should be prompted to transfer media between near-line and off-linc in an
efficient manner. This should be viewed as another level of hierarchy with full
functionality, and statistics should be made available.

A key issuc in any Data Center is the data integrity and the data preservation. To ensure
the high' ,. quality for all data ingested and distributed to the users, it is important to
capture, report, and react to errors in a usable way. These errors could occur with the
media, the drives, the disks, or be related to some software problems. Even soft media
errors may need to be monitored to identify archive media degradation. Data corruption
needs to be automatically detectable through methods such as computation and
compaiison of file checksums upon all archival and retrieval requests. In spite of being
critical, errors are not always provided with enough information, are often listed in a
cryptic form, are difficult to locate in log files, or are simply not reported. Programs
requesting the data are often not provided with adequate feedback to respond to both
critica (e.g., hard media) failure and non-critical (e.g. soft media) failures. This creates
coinusion, requires a high level of expertise, and can have a detrimental impact on day to
day operations. Error detection is not sufficient in itself and "smart” algorithms should be
in place to take appropriate actions after errors are discovered. For cxample, a
configurable limit should be set pertaining to the number of retries to read or search for a
file. Another example may be to not automatically mount new media when an
unrecoverable write error is detected, since the problem could be due to a bad drive and

307

could result in numerous new tapes being discarded. Similar problems can occur with
WORM optical media where a failure due to a bad drive is incorrectly interpreted to be a
media failure and a new media is requested. When the request again fails, another ncw
media is requested, and so on, until operators notice the problem and shut-down the
operation. This can cause thc loss of many platters and requires extensive manual
intervention to rectify this situation . These examples illustrate that the hard-coded error
handling policies implemented for general, success-oriented operations do not always
function well within a large, operational system. These policies arc easily correctable and
changeable. Changing policics and requirements may be a trivial task to implement
with an in-house system, but may be much more difficult to integrate with a commercial

packa e.

When dealing with very large science data centers (Petabytes), scalability is a major
issue. An HSM should be designed to scale not orly with the volume but also with the
number of files being archived. This may require Jdistribution of the software as well as
the hardware. Implementation of a Unix file system or a virtual disk system is not
regarded as a viable solution because of its limitations. There is a limit in the operating
system on the number of concurrent open calls. The name server in an HSM can also
become a bottleneck with very large number of files and some of the modules composing
a data archive system may havc to be distributed over several machines to spread the load
more evenly.

Purchasing a commercial product such as an HSM provides many advantages. On the
other hand, there may be major drawbacks that should be diligently evaluated before
making any decision regarding the need for a COTS product versus an in-house product.
One major problem experienced at the GSFC DAAC was the integration of UniTree with
custom archive and distribution software. The task was difficult, ime consuming.
expensive to implement, and caused long delays in the delivery of the whole system. Onc
solution was to request the vendor to incorporate the desired functionality in a new
release. However, these functions may be too specific to have market value; or when
there is interest to other users, it usually takes months. if not years, before design,
integration and release. Another approach is to contract the integrator to develop specific
functions that are not part of thc core commercial product. Besides the length of time to
set-up the contract, provide the requirements, and then design, write, test and integrate the
functions, there is a high risk involved in tailoring a commercial product to meet specific
needs, as each ncw release of the product may require new customizea development
resulting in a high cost. All together, the process can be extremely lengthy in time and
frustrating in having to write work-around software or procedures to try and handle the
situation while waiting for the vendor to react. HSMs are rather complex systems, built
for specific, well-defined systems, and are not without flaws. Some of these bugs may
seriously limit how the system can be used and it may take weeks or months to obtain a
patch to fix the problem. While requiring in-house resources and expertise, there is more
control with programs developed in-house. Bugs can usually be rectified more quickly
and decisions can be made internally to prioritize them. Morcover, the experience we had
with UniTree and the discussion we had with other colleagues tend to confirm that HSMs

308

have not yet reached the stage of maturity found in products such as data basc
management systems.

Pant of the original charter of the GSFC Version 0 DAAC was to test EOSDIS concepts
and standards. Experimentation with various HSM strategies and the development of
Archer as a possible alternative to commercial HSM products fit within that charter.
Having an in-house product would also increase the ability to add new media types.
which usually takes place on a longer time scale with COTS. The high cost of
commercial HSMs is another consideration that cannot be ignored and contributed
heavily in the decision to develop Archer. This is even more important in a distributed
environment where a home-grown HSM can be freely redistributed whereas a COTS has
to be licensed for multiple platforms and sites. In addition to the expensive purchasc
price, there is usually a high maintenance cost and some integration development costs
that makes commercial HSM solution less attractive. While the preference is to usc a
commercial product, in some cases no commercial product can satisfy specilic and
unique needs, and the developer must rely too much on companies whose goals arc
oriented towards slightly different requirements or functions. A key to the usability of a
COTS product is whether its main functionality matches or just resembles one’s nceds. If
just resembling one’s needs, as was the case of COTS HSM packages and the science
data needs of the GSFC DAAC, then attempting to either fit the COTS package into a
slightly different functionality or assuming new releases to include the requircd
functionality can be costly in time, resources, maintainability, and usability . These arc
some of the arguments and justifications that led to the design and development of a
secondary archive system at the GSFC DAAC. One can hope that HSMs will become, in
the near future, mature and flexible products that satisfy a vast and varied quantity of
customers at a reasonable price.

Design of the secondary archive

Archer is a hierarchical storage management system that was designed to satisfy the
requirements specified in the previous section. Files can reside in a cache, be robotically
accessible, or be on a tape off-line. Users do not need to know the physical location of
the files (data transparency), however, this information is easily and rapidly accessibic
through an API or by querying the Oracle data base which is used to keep track of file
locations. The use of a relational data base facilitated and expedited the development of
the system and provided a journal file to insure integrity of the archive database.
Migration between cache and tape is automated and data can be stored and organized by
families. For instance, a family can represent all files that belong to a specific product
and level. The Archer file names are similar to the ones used in Unix, yet there is no
implementation of a Unix file system. Consequently, commands such as open/close are
not available and others, such as Is must be simulated through database SQL commands
(e.g., and "als" command is provided to simulate Is). Files are simply requested to be
stored or retrieved to/from the archive via PUT and GET operations. Multiple users can
be serviced simultaneously and the client/server architecture has been designed to permit

309

a distribution of the various servers among different machines to make ‘he system
scalable.

Archer file names have two parts. The first part identifies the directory to which a file
belongs. The second part identifies the file. Both the directory and the file part can be
any arbitrary string of characters (e.g. */" are not required) but by convention, the names
have been chosen to be consistent with Unix. Each directory is assigned to a family when
created and is stored in an Oracle database table. The first part of a file name must
completely match one the Archer directories, the part remaining is considered the file
name.

The architecture of Archer is illustrated in Fig. 3. The main components of the system
are defined as:

client interface (API): This is a series of C-callable entry points through which requests
arc originated. A request can be made to archive files, retrieve files, list files, delete files,
list directories, list families, add tapes, list tapes, delete tapes, and flush families. All
client interfaces communicate with a single archive server process.

Files can archived and retrieved in any size batch using cither a synchronous or
asynchronous method. The client is responsible for copying files out of <ache during a
file retrieval requcst. Command-line wrappers exist around all API funcitons so that the
Archer internals can be accessed from the shell.

archive server. Only one archive server exists per archive. The archive server supports
multiple file servers, and is responsible for directing message traffic between clicnt
processes and file servers or rejecting any requests which contain invalid information,
The archive server can run on any machine in the archive.

file servers: Each file server is responsible for managing requests and file tab.cs for a sct
of families in the archive. The file server manages cache space for all requcsts and
verifies that the requests are satisfied. Each file server can manage multiple cache
directories. Each file server supports multiple storage managers. For performance
reasons, file servers may run on different machines in the archive.

copy server: A copy server is a small process which receives requests from the file
servers to copy files into cache for archive requests. The copy server can copy a
coniigurable number of files into cache in parallel. The copy scrver exists to minimize
the overhead involved with forking processes to copy files in parallel. One copy scrver
runs on each machine in the archive.

storage managers: Each storage manager is assigned a subset of the file server's families.
Each may manage a different media type. The storage manager is responsible for
managing and ordering the storage/retrieval of requests to/from tape. Each storage
manager supports multiple storage servers, all of which must contain the same media

type.

310

storage servers: Each storage server controls an individual storage device whether it is a
single drive, a stacker, or a more complex multiple drive robotic system. The storage
server is responsible for all activities involved in the storage/retrieval of files to/from
tape. These activities include the loading/unloading of tapes to/from drives, tape
positioning, tape verification, and the reading/writing of files to/from tape. Each type of
storage server has its own type of ACE control display.

This is a GUI interface through which the operator and the archive interact. The ACE
interface displays the status of the storage server and the device it is monitoring. This
status includes whether the device is on-line, off-line, reading, writing, or idle, and the
names of the tapes in the slots of the device, if applicable.

Through this interface, an operator may be notified of various events (c.g. system restarts.
tape write errors), some of which may require a responsc. An operator may be prompicd
to mount a series of tapes in various slots of the device, or they may issue a request to
load tapes manually

311

Fig 3 Archer Architecture

PUT and GET scenarigs

In a typical PUT scenario, the client sends a request to the archive server to archive a
file(s) to a specific family. The archive server directs the request to the appropriate file
server. The file server allocates disk space in the cache and sends a message to the copy
server to transfer the file(s) into the cache. After the file is copied to cache, a message is
sent back through the system, informing the client of the cache transfer status. In a
successful cache transfer, a message is sent to the appropriate storage manager. The
storage manager receives and queues requests of successful cache transfers and waits for
a pre-defined number of files (by family) to be staged in the cache before submitting a
request to the storage server to copy the files to tapes. Finally, the storage server mounts
the right tape and writes the data to it.

312

In a typical GET scenario, the client sends the request to the archive server which
forwards it to the appropriate file server. The file server identifies whether the file(s)
resides in the cache. When the file is not in the cache, the file server allocates disk spuce
in the cache and sends a message to the storage manager to retricve the file. When the
storage manager determines the time is right to fetch the file, a message is sent to the
appropriate storage server, the right tape is mounted, and the file is read from tape into
the cache. A message is then transmitted back through the system informing the client of
this transfer. To avoid authorization problems the client is responsible for copying data
from the cache to its location.

Archer storage format

In designing the Archer storage format, the option of using a proprietary format such as
the one implemented in UniTree was rejected due to concerns with portability, and
flexibility. Another important consideration was the ability to reconstruct the mectadata
directly from tape without the need of the database. This feature can be useful in the
event of a disaster and can also facilitate the migration to another archive system which
may not have access to the database system. There is no official standard archive format
available but tar is a de-facto standard with Unix and other platferms, and for this reason
was selected as the best candidate to satisfy our requirements. As mentioned above, the
GSFC DAAC average file size (at the current time) is relatively small (1 MB) and,
therefore, saving each file in a separate tar format would result in a heavy performance
and space penalty. To alleviate this problem, groups of files are saved in a tar filc callcd
a "save set” prior to being migr.'zd to tape. The number of files to tar together is usually
selected so that a "save set" is around 50-100 MB for a 1-2 MB/s tape drive. The sizc of
the save set is configurable for different media and data types (i.c., families) in order to
best utilize the performance characteristic of the tape drives based on the file
characteristics of the data. When a file is requested from an Archer tape, the whole save
set where the file resides is read from tape and untared on the fly. Reading a save sct
takes longer than reading a single file but this penalty is small compared to the high
overhead associated with the mcunt/load/search times. In addition, since the data requests
are based on high quantity, batch file retrievals, neither single file access (such as
provided by UniTree) or, the even more granular, block oriented access (such as provided
in the AMASS HSM system) provide any benefit, and can, in fact ,hurt overall
performance for this type of system. The Archer storage format is illustrated in Fig 4.

Error detection and recovery

From the beginning of the design of Archer, special carc was given to error detection and
recovery. This is critical not only to minimize impact on day to day operations but also
to insure the integrity of the data archived and distributed at the GSFC DAAC. The first
type of errors to examine is media failure. When a tape write error is detected, several
pre-assigned and operator configurable number of attempts are exccuted. Continued
failurc will causc an operator prompt to occur with the option to continue retrying the
operation, to ignore the requested operation, or to retry the operation on a different tape in

313

the case of a hard write error. If the operator chooses to ignore the requested operation,
he/she can then take the suspected drive off-line to avoid continuous operator prompts
resulting from this write error. With a tape read failure, the read operation is retried for
an operator configurable number of times, then marked as failed. Operators are notified
on their terminals of the media problems.

saveset saveset saveset saveset
1 2 l N N+1
tar i tar
tar index file file tar
file volume fil 1 oo N file volume
name He hame

medium_name: XXX tape name
saveset_num: 2 # saveset number
sci family_name: XXX tar
ASCH 1} e 1. family_directory file_name volume e
file . . . identical in
file 2: family_directory file_name label
every save.et
on tape
File N: family_directory file_name
Fig 4 Archer tape format
Performance

One of the main considcrations in the design of Archer was to develop a system with
good performance. The emphasis was on the gross throughput of groups of related files
as opposed to single-file turn around time. In order to achieve this objective several key
features have been implemented. As mentioned above, files are grouped in save sets,
improving the performance of a system with small files. To increase the hit cache ratio, a
cacl = management algorithm has been developed on the file server with tue capability to
easily include new scheduling algorithms if desired. Improved log messages have also
been designed to track the status of each file (examples: staged and purged) in the system
and to monitor and generate performance statistics. New files ingested in the system are
queued in the cache and copicd to tape only after a pre-assigned volume of data is

314

reached. This allows a large volume of data to be copicd with a single tape mount. Files
requestcd are first searched for in the cache. When the files are not located in the cache.
Archer will sort files in the order they are physically stored on tapes, to minimize the
overhead due to file positioning on the tape and the mounting and dismounting of tapes.
Archer was developed with a multi-threaded client/server architecture and multi-threaded
tape /O architecture that provides cfficient streaming of tape drives. The DLT tape
drives havce been tested to read/write close to the peak transfer rates advertised by
vendor: Having a large databasc that contains the logical to physical relationship
provides casy to utilize information but, due to the size of the files (millions) and the need
to continuously access the table, performance is adversely affected. To party alleviate
this prablem, the first part of the file name maps to the family name, which allows a
quick identification of the table to which the file belongs. As mentioned in the Status and
Future Work Section, future versions of Archer will be independent of a relational
database system.

One of the goals of Archer was to facilitate the operational activities at the ” DAAC
as well as the jobs performed by operators. One of the features of ACE (utilizing a
graphical Tcl/Tk interface) is to provide a message button that highlights problems
encountered. For example ACE (sece Fig. 3) may list a tape write emor . Archer
processes are carcfully monitored by an overseer process and if a problem arises, a
message is displayed to ind -ate if the processes exited normally, abnormally, or failed
due to a signal. In the event of failure, the archive is automatically restarted and the
operator is notified.

Table 2 summarizes the issucs discussed above.

315

Table 2: Summary of Archer Features and Functions

Issues

Features

Good performance

-low overhead to sustain operation at near tape speed

- minimize number of mounts

- maximize number cf files requested from tapes

- multi-threaded tape 1/0

- multi-threaded client services

- hierarchical storage (disk cache, magnetic tape. off-line)
- sort file read order by tape

- allow large batch reads for imggoved $0." -

Interoperability

- no proprietary tape format (us< tar)
- open system
- self contained (contains data & metadata) (HDF)

- recreate metadata dbms from reading tap

Large requests of small files - save set
J Archive management - support on-line, near-line, and off-line media
- API

Flexible

-configurable parameters (based on data type or familics, media,
system, elc.).

Capture and mwnitor errors

- tape drive

- media

- disk cache failure

- ACE display/monitor system

Error recovery

- before file is cached
- before migration
- during mig{ralion

Scalable system

- distributed H/W
- distributed S/W
- distributed storage devices

Administration

- reliable
- archive multiple copics
- collect statistics
- efrors
- performance
- facilitate migration from VO to V1
- reduce dependencies on vendors
- minimum coupling with DADS software
- simplify integration
- simplify exportation
- integrity
- journal file
- support operator assisied oft-line tape access

Kept simple

- does not implement a Unix filc system

- file name similar to Unix file system

- simple synchronous and asynchronous put/get user mterface
- retrieval is by family and file identifier

- COTS software to handle archive database

Hierarchical storage management

- files can be in cache, on tape, or off-line
- identical storage and retrieval operaticns
- gutomatic migration from cache (o tape

316

Status and Future work

Since its delivery in Fall 1995, Archer Version 4.4 has been used on several occasions o
recover lost tiles. Based on random audits, no file loss from Archer has yet been detected
and Archer outperforms UniTree in archive operations, especially with large batches.
Therc have becn some opcrational problems. For example, some unexpected tape crrors
have occasionally causcd the Archer system to hang. Also, only one single cache disk is
currently supponicd and file and tape status is available only through SQL databasc
queries.

The next build of Archer, scheduled to be operational in August 1996, should improve
the overall performance threugh better internal scheduling of database operations.
Multiple cache support bas been added. Error recovery has been modified to prompt
operators when several tape retries failed and to provide a choice of options. A global
process monitors Archer and alerts operators to any problem detected.

Several - her NASA groups have expressed an interest in Archer and there are plans to
enhance Archer to be more like a COTS package with full documentation and its own
configuration management {independent of the DADS dcvelopment). The two main
features envisioned are to remove Archer dependency on Oracle by maintaining the
necded information intemnally and in disk files, and to improve the storage manager and
storage server to better support new robotic devices and drives.

Conclusion

The GSFC DAAC has successfully designed and implemented a secondary archive
system with a staff of one to three programmers over a fifteen month period. The initial
relcase was operating after only seven months of design, development and testing.
Though still in its infancy, Archer is satisfying the most pressing needs of the GSFC
DAAC.

While Archer provides only a subset of the functions available with COTS software like
UniTree, it supports migration between near-line and off-line media and offers good
performance and flexibility. By selecting tar as tape format, Archer makes data more
portable between Unix systems.

References
{11 Architecture and Evolution of Goddard Spacc Flight Center Distributed Active
Archive Center, Jean-Jacques Bedet, Wayne Rosen, Mark Sherman, Hughes STX: Phil

Peasc, NASA/Goddard Space Flight Center, NASA Confercnce Publication 3295, March
28-30, 1995.

317

NEXT
DOCUMENT

"

The Global File System?

Steven R. Soltis, Thomas M. Ruwart, Matthew T. O’Keefe
Department of Electrical Engineering
and
Laboratory for Computational Science and Engineering
University of Minnesota
4-174 EE/CS Building

Minneapolis, MN 55455
soltis@ee.umn.edu
Tel: 612-625-6306
Fax: 612-625-4583

Abstract

The Global File System (GFS) is a prototype design for a distributed file system in which
cluster nodes physically share storage devices connected via a network-like Fibre
Channel. Networks and network-attached storage devices have advanced to a level of
performance and extensibility so that the previous disadvantages of shared disk
architectures are no longer valid. This shared storage architecture attempts to exploit the
sophistication of storage device technologies whereas a server architecture diminishes a
device's role to that of a simple component. GFS distributes the file system
responsibilitics across processing nodes, storage across the devices, and file system
resources across the entire storage pool. GFS caches data on the storage devices instead .
of the main memories of the machines. Consistency is established by using a locking
mechanism maintained by the storage devices to facilitate atomic read-modify-write
operations. The locking mechanism is being prototyped on Seugate disk drives and
Ciprico disk arrays. GFS is implemented in the Silicon Graphics IRIX operating system
and is accessed using standard Unix commands and utilities.

Introduction

Distributed systems can be evaluated by three factors: performance, availability, and
extensibility. Performance can be characterized by such measurements as response time
and throughput. Distributed systems can achieve availability by allowing their working
components to act as replacements for failed components. Extensibility is a combination
of portability and scalability. Obvious influences on scalability are such things as
addressing limitations and network ports, but subtle bottlenecks in hardware and software
may also arise.

These three factors are influenced by the architecture of the distributed and parallel
systems. The architectures can be categorized as message-based (skared nothing) and

! This work was supported by the Office of Naval Research under grant no. NO0019-95-1-0611, by the
National Science Foundation under grant ASC-9523480, and by grant no. 5555-23 from the University
Space Research Association which is administered by NASA’s Center for Excellence in Space Data and
Informanon Sciences (CESDIS) at the NASA Goddard Space Flight Center.

319

shared storage (shared disk) Message-based architectures share data by communication
between machines across a network with the data stored locally on devices within each
machine. Machines in the shared storage architecture access all storage devices directly.
Figures 1 and 2 show examples of message-based and shared storage architectures [1}{2].

Node Node

Server Server Storage Controfler Storage Controller

Figure 1: Message-Based Figure 2: Shared Storage

Advocates of both architectures claim the advantage with respect to these three factors.
This is a techno-religious war that will not be resolved any time soon, yet analyzing
existing systems gives perspective on the strengths and weaknesses of each architecture.
This next section summarizes a number of distributed file systems based on their data

sharing approaches.

Message-based Distributed File Systems
Sun Network File System

The Sun Network File System (NFS) was designed by Sun Microsystems in 1985 [3].
It's design goals were system independence, name transparency, and preservation of Unix
file system semantics. NFS uses a client-server approach. The server is stateless and
writes modified data to stable storage before returning results. The server is able to cache
data in 1ts system memory to improve performance. The clients make requests to the
server with all information necessary to complete the operation. Clients and servers
communicate over a network using remote procedure c1lls (RPC). The RPC is a high
level protocol built upon User Datagram Protocol (UDP) and Internet Protocol (IP).

The statelessness of the server eases crash recovery. A client that goes down does not
effect \he operations of the server or other clients. A server that fails need only to reboot.
The clients will resend requests when the server has not completed their requests in a
given time. The clients perceive the server as being slow but they are unaware that it has
rebooted.

320

Sprite File System

Sprite is a distributed operating system for networked workstations developed under the
Symbolic Processing Using RISCs (SPUR) research project [4]. Like Sun NFS, Sprite
uses remote procedure calls to communicate across its network. Sprite's file system is
distributed across multiple servers and clients. It's primary goal was to provide name
transparency while still providing adequate performance. Even device special files are
accessible to any process on the network.

The Sprite file system maintains cache consistency using a server-initiated approach.
The server tracks open files. When files are non-write-shared, the clients may cache the
portions of a file within their local memories. When a file moves from non-write-shared
to write-shared, the server performs a call-back operation and disables client caching.

Andrew and Coda File Systems

Carnegie Mellon University's Coda is a distributed file system descended from the
Andrew file system which was a joint research project between IBM and CMU [5][6].
Both file systems are designed to operate on a distributed network of workstations scaling
up to 5000 machines.

Coda (constant data availability) was designed to improve on the availability of Andrew.
Each client is able to cache entire files locally in its memory and disks. Furthermore,
multiple copies of each file may exist on several servers. A server failure may then have
little impact on availability. This approach also allows clients to run in disconnected
operation using only the files it has cached locally. The client can reconnect to the
network and synchronize its cache with the rest of the system.

Like the Sprite file system, Coda servers maintain state concerning file accesses. The
servers are responsible for performing call-backs when a clients cached data has been
modified by another client. File sharing on a client is guaranteed to have consistency
described by Unix file sharing semantics. Files shared across different systems see
consistency a: the granularity of the entire file.

XFS Serverless Network File System

The xFS file system is part of the Berkeley's Network of Workstations (NOW) project
[7). It is a successor to some ol the research from the Sprite project. It uses a log
structured approach like Sprite's Log-structured File System (LFS) and Zebra's [8]
striping technique to simplify failure recovery and provide high throughput transfers.

321

In xFS workstations are connected by a fast, switched network. xFS is said to be
serverless, since the storage server functionality can be placed on the same machines as a
client. Hence, any system can manage control, metadata, and real data. This has
advantages of load balancing, scalability, and high availability.

Like Sprite, the system supports data caching on the clients [9]. The client requests data
from a manager. This manager tries to satisfy the request from another client’s cache;
otherwise it directs the client the appropriate storage device. xFS uses a token based
cache consistency mechanism. A client must acquire a token for each file system block
that it wishes to modify. The managers notify the clients to invalidate their stale copies
of the data and forward their requests to the new owner of the token.

Shared Storage Distributed File Systems
Digital's VAXClusters VMS

The VAXcluster is a “closely coupled” structure of VAX computing and storage nodes
that operates as a single system. This system had VAX nodes connected by a message-
based interconnect. Each processor runs the same copy of the distributed VAX/VMS
operating system. The interconnection network had two topologies: the high
performance Star Coupler hub that supported a maximum of 16 devices and a low cost
Ethernet network [10].

The storage devices are connected to the system through a Hierarchical Storage
Controller (HSC). For high-reliability, another HSC could be placed between the dual
ported storage devices and the star coupler by adding a redundant path between the CPUs
and the storage devices.

The operating system allows files to be shared using the cluster's distributed lock
manager. Lock requests are made for a particular access mode: exclusive access,
protected read, concurrent read, or concurrent write. Incompatible requests for resources
are queued until the resource is unlocked. This system is a shared storage architecture,
since all file requests are serviced fror the shared HSCs. Each HSC can support up to 32
disks.

VMS allows caching for data ana file system resources. Coherence is maintained
between the CPU's local memories by sequence numbers within the files' synchronization
locks. When the file system modifies a block, it increments the sequence number in the
file's lock. If another system has this block cached and later references it, this system will
find that it's sequence number is old. The block will be refreshed from the HSC.

322

Cray's Serverless File System

Cray Research's Serverless File System (SFS) is a file system incorporated in their
UNICOS operating system [11]. The file system uses a HIPPI disk array as the shared
storage device. The disk array is connected to four C90 machines through a HIPPI
switch. All C90 machines (nodes) act as peers; there is no server machine.

Arbitration of the HIPPI disk array is performed on a Sun SPARC workstation which is
also connected to the HIPPI switch. This workstation, call the HippiSeMaPhore (HSMP)
is responsible for maintaining semaphores used for mutual exclusion of data stored on the
disk array. It also has error recovery functions.

Cray's SFS supports two types of file operations: multiple readers and single writer. SFS
provides consistency by using the semaphores to facilitate read-modify-write operations
as well as limiting the open file states. Nodes are able to cache data like a local file
system but with the constraints of more limited parallel file operations.

Message—based Versus Shared Storage

The message-based architecture's strength lies in its extensibility. The approach is as
portable as the network protocol connecting the machines and it can potentially scale to
large numbers of machines. The best example of message-based portability is NFS. This
file system dominates the industry, because it is available on almost every platform. File
systems like Coda have shwn that the message-based approach scales to thousands of
machines.

Message-based systems may perform well if data access is well balanced across all
machines. Load balancing is difficult since machine capacities and usage differ
dynamically across the system. Locality is also difficult to maintain, since there will
always be resources that are shared by many nodes in the system. Redundant copies can
be maintained but at the cost of coherence overheads. Furthermore, the performance
benefit of high speed devices like disk arrays is negated, since the bandwidth to each
machine is limited by the network. To summarize. achieving good performance on
message-based systems is not an easy task.

Server and device failures are another challenging problem facing the message-based
approach, since a server failure may result in data becoming inaccessible. Fault tolerance
may be maintained using disk array devices at each node, but redundancy is not extended
across machines. Software redundancy schemes must be built into the file system to
maintain any fault tolerance.

The shared storage approach has the advantage that every machine has nearly uniform
access to all storage devices and freedom from servicing data requests from other

323

machines. This approach is similar to the traditional uniprocessor model where a
machine acts independently. Also, failures of a machine have little effect on other
systems except for possible load increases. Storage device availability can be improved
using hardware RAID [12].

The shared storage architecture takes advantage of the properties of the underlying
storage hardware. Since every node has uniform access to the devices, the bandwidth
produced by disk arrays or disk striping can be utilized by all nodes. Also, devices
capable of command queuing can optimize head seeks to provide high throughput.

The downfall of traditional shared storage system has been scalability and cost. Systems
like the Digital's VAXcluster and Cray's SFS are based on proprietary networks and
hardware. Proprietary hardware does not benefit from market competition and often
remains costly. Furthermore, these systems do not scale with the number of nodes. In
both examples, only one storage device and a few machines can be attached to the
system.

So far neither architecture fully satisfies all three factors - performance, availability, and
extensibility but new network technologies are changing this. For instance, Fibre
Channel (FC) is an emerging ANSI and International Standards Organization (ISO)
standard for a network architecture [13] that supports network attached storage by
including the SCSI-3 channel protocol. Fibre Channel provides two topologies for
network attached storage: switched and arbitrated loop [14].

A high speed network like Fibre Channel can improve the performance of both shared
storage and message-based architectures, yet it does little to improve the extensibility and
availability of the message-based approach. Providing network attachment to storage
devices greatly enhances the extensibility of shared storage. With a network like Fibre
Channel, a system that is non-propriety and portable can be built using the shared storage
architecture.

Existing shared storage systems must be redesigned to exploit the properties of these
networks and devices. The assumptions that traditional shared storage file systems made
with respect to data caching, coherence, and resource management are of ;olete. For
instance, Cray's SFS caches data locally on its nodes to exploit the high bandwidth, low
latency memories of the C90s. This caching comes at the price of allowing only non-
write-shared file operations. That is, if the file is opened by one or more readers, a writer
cannot access it until all readers close the file. This coherence mechanism can lead to
large latencies and even starvation.

324

The Global File System

The Global File System is a prototype design for a distributed file system. Network
attached storage devices are physically shared by the cluster nodes. The GFS prototype
is implemented in the Silicon Graphics’ IRIX operating system [15]{16] under the VFS
interface and is accessed using standard Unix commands and utilities {17]{18][19]. The
machines and storage devices are connected via a Fibre Channel network.

GFS views storage as a Network Storage Pool (NSP) — a collection of network attached
storage devices logically grouped to provide node machines with a unified storage space.
These storage pools are not owned or controlled by any one machine but rather act as
shared storage to all machines and devices on the network. NSPs are divided into
subpools where each subpool takes on the attributes of the underlying hardware.

GFS targets environments that require large storage capacities and bandwidth such as
multimedia, scientific computing, and visualization [20]{21]). These large capacities
influence tradeoffs, such as caching and the metadata structure, associated with the
design of a file system.

Chip integration has transformed storage devices into sophisticated units capable of
replacing many of the functions performed by a server machine in a client-server
environment. These devices can schedule accesses to media by queuing multiple
requests. They possess caches of one or more Megabytes that can be used for read and
write caching and prefetching.

GFS caches data in tae nodes' main memories only during I/O request processing. After
each request is satisfied, the data is either released or written back to the storage devices.
To exploit locality of reference, GFS caches data on the storage devices. GFS informs
the devices on each request what data is appropriate to cache - such as metadata that is
accessed repetitively and small files like directories which are frequently accessed.
Consistency is established by using a locking mechanism maintained by the storage
devices to facilitate atomic read-modify-write operations. This fcrm of locking has the
simplicity of a centralized mechanism yet is distributed across a large number of devices.

Figure 3 represents an example of the GFS distributed environment. The nodes are
attached to the network at the top of the figure and the storage pool at the bottom.
Connecting the nodes and the devices is a Fibre Channel network which may consist of
switches, loops, and hubs. In the example, three different subpools exist: /single is a
single disk, Avide is a striping of several disks, and the /fast is a disk array.

325

GFS Node

CPU Memory Dusk GFS Node /
GFS Node D E @ NFS Server
CPUS Memary ks CPU Memory Disk
IL E = - E @ NFS
/ Client NFS

Fibre Channel Network: Client
Switches, Hubs, and Loops @
/
NFS
/ / /7 \ NFS bk

Client

/single /wide
Network Storage Pool

Figure 3: GFS Distributed Environment

To the figure's left is a tape device which is directly coanected to the network. Such a
tape drive may be used for data backup or hierarchical storage management. A node
could initiate third party transfers between the disk devices and the tape drive. The figure
also shows how a GFS host can act as a NFS server. This ability allows machines
without GFS capabilities to access GFS data via an NFS exported file system. The
operating systems VFS interface handles the translation between GFS and NFS.

File System Structure

Each GFS file system is divided into several Resource Groups (RG). Resource groups
are designed to distribute file system resources across the entire storage subpool. Figure
4 shows the logical structure of a file system. Multiple RGs exist per device and can be
striped across several devices.

Resource groups are essentially mini-file systems. Each group has a RG block, data
bitmaps, dinode bitmaps (used as the dinode free list), dinodes, and data blocks. The RG
block contains information similar to what traditional superblocks maintain: the number
of free dinodes, the number of free data blocks, and the access times of the RG. File data
and metadata may span multiple groups.

326

GFS also has a superblock which contains information that cannot be distributed across
the resource groups. This information includes the number of nodes mounted on the file
system, bitmaps to czlculate unique identitiers for each node, and the file system block
size. The superblock also contains 2 static index of the RGs. This RG index describes
the location of each group as well as the group attributes and layout.

A GFS dinode takes an entire file system block. Each dinode is divided into a header
section which contains standard dinode fields and a section of pointers. The number of
pointers in a dinode is the determined by equation | and the number of pointers an
indirect block has is given in equation 2.

file system block size - size of dinode header

pointers in dinode 4}

size of block address

file system block size

pointers in indirect block @

size of block address

Super Block
with
Resource index

Device LocK
1

ccaswns CEX XY

2

Resource Block - 0

Dinode Bitmaps

Resource Block - n

Dinode Bitmaps

Data Block Bitmaps

‘ -
I '
s 1
[] L] []
» ' .
. N *
' :]
H Co .
H * :
» HE .
M [} 4 |
Devcs Lokl binoge - 0 * | Dinode-we | Omode-xer | 401
2§ Y . d
L] 1]

: : 3 N 1 : 3 R |
Device L ’ {Device Lock
: o‘ﬂ: Dinode - w : ' Dinode - x 4 Dinode - 2 1 .

1 »
' L : '
‘| DataBock-0 |1 * DataBlock-qet i | Damslock-s+1 | 3
; L ; : :
U JNNS S N B .
])])
o| Osadock-q |! | Dawiock-r |3 | DaaBlock-t |
[}] [}
' b : ! :

cSesrcapan

Resource Group - 0 Resource Group - 1 Resource Group - n

Figure 4: GFS Structure

327

The pointers form a tree structure in which all data blocks are at the tree's leaves and
have the same height. This structure is used so that all its accesses require the same
number of indirect accesses to the data blocks regardless of the offset into the file. This
structure differs from the traditional Unix file system (UFS) where data blocks might
have different heights. The UFS tree is simpler to implement yet can require an
additional level of indirection. Furthermore, UFS places multiple dinodes per file system
block. By taking an entire block, the GFS can have hundreds of direct pointers in the
dinode instead of just ten as in a UFS dinode. Figure S illustrat.. a GFS dinode and rne
level of indirection for referencing the data blocks.

GFS Dinode Indirect Blocks Data Blocks

¢ Dinode Number /E
Resource Group .

| Number :
@ File Type
L 0
¢ Owner/Group
@ Number of Links /.—-:]
® Access Times
® Bookkeeping Info .

Figure §: GFS Dinode
Device Locks

Device Locks are mechanisms for node machines to maintain mutual exclusion of file
system data. They are implemented on the storage devices and accessed with a single
SCSI command. The Dlock command instructs the devices to perform primitive
operations on the locks - test und set and clear. The implementation of the device locks
on the device are limited by the following constraints:

1. The device lock commands are independent of all other SCSI commands.

2. Devices supporting ’evice locks have no awareness of the nature of data or resource
that is locked for mutual ¢xclusion.

328

3. Each lock requires minimal amounts of device memory - as little as one byte per lock..

Lock States

The state of each lock is described by one bit. If the bit is set to 1, the lock -as been
acquired and is owned by a inachine node. If the bit is 0, the lock is available to be
acquired by any node. The Dlock command action test and set first determines if the
lock value is 1. If value is 1, the command returns with a status indicating that the iock
has already be acquired. If the value is 0, Dlock sets the lock to 1 and returns a good
status to the initiator. The Dlock command clear simply sets the lock bit to 0.

Clocks

Associated with each lock is a clock. The clocks are logical clocks in the sense that they
do not relate to time but instead keep an ordering of events for each lock. These clocks
are incremented when a successful action is performed. The clocks are used tu monitor
how often a lock is accessed; i.e., how many times the lock has been set and then cleared.
Such a clock gives insight into load balancing hot-spots. These occur when some locks
are accessed more often than others. More importantly, these clocks ave useful for error
recovery.

The clocks are implemented using a minimal amount of memory — typically 7 to 16 bits
each. The initiators must be aware that the clock values periodically rell-over from their
maximum value to zero. This may happen several times a second on a highly accessed
lock, so care should be 1aken by the initiator not to assume that the clock value i< slowly
growing. The clock value is returned after each Dlock command.

Device Failures

The device locks and their accompanying clocks are stored in volatile memory on the
device, although the locks are held across SCSI resets. When a device is powered on or a
failure occurs which results in the locks being cleared, the device notifies a!l nodes by
setting Unit Attention . Upon finding a unit attention, a node checks to see if its locks are
still valid. Before proceeding, it will then re-acquire any locks that may have been lost.

Nede Failures

A node that fails could leave device locks in the locked state indefinitely. These locks
will remain in this state until some node clears them. A node attempting to acquire a lock
that is owned by a failed node can identify that the lock has been untouched by checking
the activity of the lock's clock. If the clock has remained unchanged for an extended time
period, a node can identify such a case and clear the lock.

329

Care must be ..." en by the node clearing a lock that it does not own. The true owner may
have failed or it may be in a hung state from which it will eventually return still believing
it owns the lock. Furthermore, two separate nodes may simultaneously identify the same
lock which must be cleared and send resets. It may be possible that the first node clears
the lock and sets the lock in the following command. The second node which has already
decided to clear the lock sends the command after the lock has been acquired by the first
node. This second clear request must be ignored.

When a node wishes to clear a lock as failure recovery, the device compares the current
clock with the input clock from the node. This test ensures that the lock will only be
cleared if the node can identify the current value of the clock.

Deadlocks and Starvation

Deadlocks are avoided by the file system. The file system only acquires locks in an
increasing order. Circular dependencies are avoided. Starvation is handled by the file
system and device drivers. The file system does not hold locks for more than a few /O
requests to storage. A node’s device drivers test for its own starvation by checking the
activity of the lock-based clock values. The node can increase the rate at which lock
requests are performed an in attempt to feed its starvation.

Consistency and Caching

Consistency is maintained by using atomic operations guaranteed by the device locks
w.en modifying data. Given the limited number of practical device locks per device - on
the order of 1024 - individual locks cannot be assigned to each file. One lock is assigned
to the super block, one lock is assigned to each resource group, and the remaining locks
are divided among the dinodes. Figure 4 shows how device locks are associated with the
superblock, resource groups, and dinodes.

When device locks are not implemented on the storage device, the SCSI commands
Reserve and Release can be used to perform atomic operations on data. These commands
provide exclusive access to the entire device for one node by not servicing requests from
other nodes. These comm=nds guarantee exclusive access but do not provide much
parallelism. With only one reservation per device, many non-conflicting requests have to
wait until the storage device is released. In a distributed cnvironment, such limited
access decreases system throughput and response times.

The SCSI pro:ocol describes the optional commands Reserve and Release on Extents.
These commands allow initiators to reserve for exclusive access only the data blocks that
they may need. These commands decrease the granularity of exclusion from the device
level to the block level. While potentially increasing the throughput of the distributed
system, Reserve and Release on Extent commands require the devices to maintain

330

complicated states of access permissions. For this reason, these commands are generally
not implemented by the majority of device manufacturers.

We present device locks as a mutual exclusion mechanism that is highly parallel, has low
device overheads, and recovers from failures gracefully. The Dlock command is being
prototyped on Seagate disk drives and Ciprico disk arrays.

Preliminary Results

Preliminary measurements have been taken with parallel SCSI hardware instead of Fibre
Channel. Fibre Channel hardware is not yet available to us, so we present the parallel
SCSI results instead. We hope to have Fibre Channel measurements by the time this
paper is presented. These results are based upon tests using SCSI Reserve and Release to
maintain consistency instead of device locks. The Dlock command is still in
development and testing by Ciprico and Seagate.

Test Configuration

These tests were conducted on three SGI Indys running IRIX 5.3 operating system. One
Indy has a 100 MHz R4600 processor while the other two have 132 MHz R4600
processors. All machines have 32 Mbytes of main memory.

A Seagate Barracuda 2LP was used as the shared storage device. The 2LP is a 2
Gigabyte Fast SCSI-2 drive. It has a 17 millisecond maximum seek time and a 7200
RPM spindle speed. Our tests measured the time for reserve and release commands to be
approximately 2 milliseconds. This disk and all three system disks share the common
bus. The disk caching parameters are set at their default values.

The configuration shown in figure 6 is a representation of the test environment. To
overrome cabling difficultics, the system disk of node 2 was attached to the internal SCSI
bus of node 0 and node 2's controller was directly connected to the internal bus of node 1.
All devices and controilers are electrically connected.

System Disks System Disk ¥
Node 0 ¢ Nodes 0and 2 Node 1 ™y Node2 Node 2
SCSI ID 4 and ? SCSI ID 3
SCSI Coutrofler SCS} Coetroller “SCS! Contrafler
SCSI ID 2 SCSI ID 1 "SCSI ID O
Fast SCSI-2 Bus
Shared Disk
SCS1
ID 5
Figure 6: GFS Test Environment
Benchmarks

Small benchmark programs were run on one, two, and all three machines to study how
effectively the SCSI bus and disk are shared. The tests were run on the file system
running in user space as opposed to running under the VFS interface of the kemnel. The
user level file system allows for easy tracing and performance measurements. The user
level file system adds various overheads to the system, so we believe that the VFS file
system will perform even better.

The benchmarks chosen involve tests of creating, writing, and reading files. The file
sizes range from | Mbyte to 16 Mbytes. Files were written and read by making from 1 to
128 requests per file A delay was placed between cach request ranging from zero to one
second. This delay represents the time for which a real application would perform
computation or wait for some reason other than /O. All tests were run five times so that
the median values could be used tc evaluate the performance. Table 1 summarizes these
benchmarks. The benchmarks chosen for these tests attempt to match the performance
capabilities of the single shared disk and 10 MB/sec SCSI bus. These benchmarks will
be scaled appropriately when performing the tests on Fibre Channel hardware with
multiple devices.

332

[Parameter | Range
‘Number of Nodes 1,23
Types Create and Write, Write, Read
File Sizes 1 MB to 16 M7
Number of Requests per File 1to 128 J
| Delay Between Requests 0 ms, 100 ms, 500 ms, 1000 ms _ |
Table 1: Benchmark Parameters
Parallel SCS!I Performance

Figures 7 and 8 show the speedups for each machine creating and reading a2 1 MB file in
128 KB requests, respectively. Figures 9 and 10 show the speedups where machines
create and read a 16 MB file in 1| MB requests, respectively. These results are scaled to
reflect equal amounts of work of 3 MB and 48 MB respectively. That is, the time for one
machine is multiplied by 3 and the time is multiplied by 1.5 for two machines. All these
times are then normalized to the one machine test by dividing by the one machine time.
Curves are given for no delay and 100 ms, 500 ms, and 1000 ms delays. The write tests
show trends similar to the read tests.

Figures 11, 12, 13, and 14 are plots of the 16 MB creates with varying request sizes.
Figures 15, 16, 17, and 18 are plots of the same test with read requests. The request axis
is the number of requests needed to access the entire file. The three curves for each plot
are the time for one machine alone, the time of the slowest machine with three machines
running simultaneously, and three times the one machine time. This last curve is given as
a constant workload comparison to the three machine case.

Figures 19 and 20 are plots of the number of conflicts encountered by machines when
running the 16 MB create and read tests and no delay between requests. Figures 21 and
22 show the same tests with a 1000 ms delay. These conflicts were counted by the device
driver whenever a reserve command failed because the device was already reserved.

333

Figure 7;: GFS Speedup for 1 MB files Figure 8: GFS Speedup for 1 MB files
Created by 128 KB Requests Read by 128 KB Requests

Figure 9: GFS Speedup for 16 MB files Figure 10: GFS Speedup for 16 MB files
Created by 1 MB Requests Read by 1 MB Requests

34

sesduce co somrwdsss anmemen

.

H
32 64 128

Reguests Requests
Figure 11: GFS Creates of 16 MB files Figure 12: GFS Creates of 16 MB files
with no delay with 100 ms delay

b-- 3-8~ 1 ML ...;.........-.:-.... one

=@ Machine * §

.

how AR SIL R TRR LA ST L1
-~ : [3

H H

cessmamacstoccnsssaanada 3

w agg $ov e oemement seencdune anvamenadfe.

450 T

400 1 103 iavnms
350

300

SO g—vT g on e
0 +
8 16 32 o4 128
Requests
Figure 13: GFS Createsof 16 MB files Figure 14: GFS Creates of 16 MB files
with 500 ms delay with 1000 ms delay

The conflict plots show several obvious but interesting trends: the single machine tests
had no conflicts; the three machines tests had more conflicts than two machines test; a
delay between requests decieased the conflicts; and creates had more conflicts than reads.
These trends can be explained by the argument that increasing numbers or the rate of
requests increases the chances of having conflicts. The tests that had the most conflicts
are those which issucd the most requests in a given time period.

The results are promising considering the nature of the tests. The no delay case
represents nearly constant access to the device in the single machine case. No parallelism
can be exploited by adding one or two machines, since the device is already fully utilized.
The slowdown seen in some plots is a result of the contention for the shared device.

335

» T H = §
7 4 -Q-:w;u-u o ——= -5- -
o || B} 4 S
-1 tm va . :
300 I
. . - P -
Requests
Figure 15: GFS Reads from 16 MB files Figure 16: GFS Reads from 16 MB files
with no delay with 100 ms delay
260 §-- J—81 ke I SO S S
Sm NUVET SRTRTRRIE 1V
. i
e 3
¢] " n l'l 29
Requests
Figure 17: GFS Reads from 16 MB files Figure 18: GFS Reads from 16 MB files
with 500 ms delay with 1000 ms delay

File creates are slower than the reads because the creates require additional I/O requests
to allocate the dinodes, allocate data blocks, and build the metadata tree. As can be seen
in the plots with the number of requests as the X-axis, the number of requests is indirectly
proportional to the performance. This is because eaci request has an overhead of greater
that 2.5 milliseconds. Also, with each request there is a possibility of a reservation
conflict which slows the request by as many as 100 milliseconds. With Fibre Channel
and device locks, both these overheads will be substantially reduced.

The 100 ms delay tests allow some parallelism to be realized. However, it is not until the
500 ms delay that the parallelism is exploited for all three machines. The 1000 ms delay
may represent the best speedup for this configuration, since according to figure 14 and
18, the 1000 ms delay test does not distinguish between one, two, or three machines
running simultaneously.

Striping the file system across multiple devices may have an effect similar to increasing
the delay between file system requests. Assuming the 10 MB/sec SCSI bus is not a

336

system bottleneck, adding another device to the configuration may remove as much as 50
percent of the burden from the single disk.

1] 32 64 128
Requests
Figure 20: GFS Reads from 16 MB files
with no delay with no delay
* : : ; 80 L H H
et NN By NN S AU
%0 {82 Mchnen ""‘E“"“‘ - "‘|:' o svees esnd 601" 2 Mac o= --.‘.--- ---.-‘-{.. cosswas an
—d—3 Machines H H " 3 Machi ' *
2% §-- S daot PR 250" - e S
k. 150 SO S FSUROR. UPRU L R R S S
N : LTS R R e
b Pl ol ——
0
* 8 16 32 64 128
Requests Requests
Figure 21: GFS Creates of 16 MB files Figure 22: GFS Reads from 16 MB files
with 1000 ms delay with 1000 ms delay

NFS Comparison

The benchmarks were also run on a configuration using NFS as a comparison between
distributed file systems running on the same hardware. This configuration consists of a
dedicated server machine and three clients. The workstations and disk are the same as
above; the server machine is a 132 Mhz Indy. Connecting the machines is a 10 Mbit/sec
ethernet network. The server's file system was SGI's XFS [22].

Figures 23, 24, 25, and 26 are the NFS equivalent of the speedup curves given above.
Figures 27, 28, 29, and 30 are given as a time comparison between the NFS and GFS read
tests. A few differences can be noticed between the GFS and NFS tests. First, while both
file system have good speedup for latger delays, NFS never has slowdown. However, the
NFS tests use a dedicated server which is onc more machine than the GFS test
configuration. The speedup values do not take this into account. Second, the GFS times

337

are much smaller - between two and ten times faster. In cases where the request sizes
were large, GFS exceednd transfer speeds of 2 MB/sec.

Figure 23: NFS Speedup for 1 MB files Figure 24: NFS Speedup for 1 MB files
Created by 128 KB requests Read by 128 KB requests

' Machines T Machines ’
Figure 25: NFS Speedup for 16 MB files Figure 26: NFS Speedup for 16 MB files
Created by 1 MB requests Read by 1 MB requests

338

\ m * 4
\ ‘4—/‘.\-‘. H ! \
42 Machres | SR VTS N =T S |
= L-.-& -t |7 : SO0 10"t Muchoe ! B
1 Machme ° 3 H i j—d—) bbchine © 3 : '
200 %4~ s RTCTETTTTULTEETTL L aadrran sansnis fasennnnanes I R T T N i [P AFOPR.
3 ! ! : 3 : : :
. . + L
T R e 200 .
é 4\.“_____4:__—-—'"4;'-'—_"’ ul-
: : ;
50 §-—emccccccmgm- megreescsmemoc go mmmememan . 100
N H :
3 3 v — '
] " » [1) 128 . 1 2 “ 122
Requests Requests
Figure 27: NFS Creates of 16 MB files Figure 28: NIS Creates of 16 MB files
with no delay with 1000 ms delay
20 b T T T
: d ' -0 4- H ahe I
180 - e oo =03 Muchines P": =3 Machinod s .
Iy 81 Mach i 400 4= cf=iii-1 Machie A . Rty <t
SO RN SO0 =1 LT VR U, LR i m i SR SR R
Y e e —— — 7
[20 St Sl wlad S [J S fesmemrnenes [SRREI Y SRR PP
4 "____"_—_—N____‘h = 200 dorvanannae ‘:\ assaanaened s\---\.qc:nsns-\u "
= . : :* 50 J :- ------ :v ------------------
! . 190 H
. * ---}.' STmeene e
s e 5 = oo
° v v - " H
s " 32 “ 2 * " 2 -“ e
Requests Requests
Figure 29: NFS Reads from 16 MB files Figure 30: NFS Reads from 16 MB files
with no delay with 1000 ms delay
Future Work

The GFS project is still in its early phase. When Fibre Channel hardware and device
drivers become available, an expanded set of performance tests will be performed. These
tests will be performed on file systems with different configurations - file system block
sizes, resource group layouts, etc.

The device lock mechanisms are to be studied to accommodate failure recovery. The
polling rates between locking retry requests must be tuned to provide a good compromise
between low latencies to each node and high system throughput. Associated with these
rates is the delay between retry algorithm - constant delay versus variable delay.

The time that a node waits before resetting a device lock owned by another node must
also be investigated. This time duration has to accommodate failures in a short period

339

without resetting prematurely. Prcmature resets cause the previous owner to rebid for
locks it once owned. This is acceptable occasionally but should be kept to a minimui...

Currently GFS stores data in a linear layout across the storage devices. This iuy.ut
allows various forms of striping and data partitioning, but we plan to generali. e “.is
layout to a subpool architecture. Each subpool will have attributes reflected by its
underlying hardware and configuration. A translation layer will be placed between tue
file system and device drivers. This translation layer will convert the linear block
addresses from the file system to the proper devices and block numbers padding requests
when appropriate.

Work has begun to study the caching algorithms and cache configurations of storage
devices. Using hardware and simulations, we are attempting to determine the benefit of
large caches. Replacement policies are also being studied.

Conclusion

The GFS approach to a distributed file system using shared storage devices seems
promising given the high bandwidth natures of new networks and the increasing
sophistication of devices. The architecture places more responsibilities on storage
devices than message-based architectures. Modern devices are able to cache, perform
mutual exclusion, and schedule requests freeing these burdens from the node machines.

The results from the preliminary performance measurements indicate that with sufficient
delay between /O requests to a shared device, device parallelism is exploited within the
system. This delay may take the form of machines performing file system requests
between lengthy computation or low activity. Striping the file system across multiple
devices may have an effect similar to increasing the delay between requests.

We believe that by using 100 MB/sec Fibre Channel and multiple storage devices, this
shared storage scheme will scale well to several machines even with large workloads.
Furthermore, the fine grain mutual exclusion implemented using the device locks will
decrease conflicts to further increase the performance of each node and the system.

Acknowledgments

We thank Ben Gribstad at the University of Minnesota for his help with device driver
development and performance evaluations. He contributed a lot to the preliminary results
portion of this paper. We also thank Aaron Sawdey from the University of Minnesota for
his advice and experience while building the parallel SCSI test configuration used during
development and preliminary tests.

340

The SCSI Device Locks represent input from a number of individuals. Much of the
design and definition is a result of dialogues with Ciprico and Seagate. We thank
Raymond Gilson, Steven Hansen, and Edward Soitis of Ciprico, and Jim Coomes, Gerald
Houlder, and Michael Miller of Seagate. Finally, we thank Carl Rigg and Brad Eacker at
Silicon Graphics for granting access to their device driver code which aided in the
development of GFS.

References

{11 P. Valduriez, “Parallel Database Systems: the case for shared--something,”
Procecdings of the Ninth International Conference on Data Engineering, pp. 460-
465, 1993,

{2] G. F. Pfister, In Search of Clusters. Upper Saddle River, NJ 07458: Prentice-Hall,
Inc., 1995.

[3] R. Sandberg, D. Golaoerg, S. Kleiman, D. Walsh, and B. Lyon, “Design and
Implementation of the Sun Network File System”, Proceedings of the Summer
USENIX Conference, pp. 119-130, 1985.

[4] J. Ousterhout, A. Cherenson, F. Douglis, M. Ivelson, and B. Welch, “The Sprite
Network Cperating System”, IEEE Computer, pp. 23-25, February 1988.

[5] M. Satyanarayanan, “Scalable, Secure, and High!y Available Distributed File
Access”, IEEE Computer, pp. 9-20, May 1990.

[6] M. Satyanarayanan, “Coda: A Highly Available File System for a Distributed
Workstation Environment”, Proceedings of the Second IEEE Workshop on
Workstation Operating Systems, September, 1989.

{7]1 T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang, “Serverless
Network File System™ ACM Operating System Review, vol. 29, no. 5, December
1995.

{8] J. Hartman and H. Ousterhout, “Zebra: A striped network file system,” USENIX
Workshop on File Systen.:, May 1992,

[91 M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson, “A Quantitative
Analysis of Cache Policies for Scalable Network File Systems”, Proceedings of the
1994 SIGMETRICS Conference, May 1994,

(10] Digital Technical Journal, VAXcluster Systems, September 1987, Special Issue -
Number $.

[11] K. Matthews, “Implementing a Shared File System on a HIPPI Disk Array”,
Fourteenth IEEE Symposium on Mass Storage Systems, pp. 77-88, 1995.

341

[12] R. Katz, G. Gibson, and D. Patterson, “Disk System Architectures for High
Performance Computing”, Proceedings of the IEEE, vol. 77, pp. 1842-1858, 1989,

[13] C. Jurgens, “Fibre Channel: A connection to the future”, IEEE Computer, pp. 82-90,
August 1995.

[14] ANSI, FC-AL Direct Attach Disk Profile (Private Loop), June 1995. Version 1.8.

(15] Silicon Graphics Inc., Mountain View, CA 94029, Programming on Silicon
Graphics Systems: An Overview, 1996. Document Number 007-2476-002.

{16] Silicon Graphics Inc., Mountain View, CA 94029, IRIX Device Driver
Programming Guide , 1996. Document Number 007-0911-060.

[17] U. Vahalia, Unix Internals: The New Frontiers. Upper Saddle River, NJ
07458: Preatice-Hall, Inc., 1996.

[18] M. Bach, The Design of the Unix Operating System, Englewood Cliffs, NJ
07632: Prentice-Hall, Inc., 1986.

{191 B. Goodheart and J. Cox, The Magic Garden Explained, Englewood
Cliffs,NJ 07632: Prentice-Hall, Inc., 1994.

[20] P. Woodward, “Interactive Scientific Visaalization of Fluid Flow”, IEEE
Computer, pp. 13-25, October 1993.

[21] A. L. Reddy and J. C. Wyllie, “I/O Issues in a Multimedia System”,
IEEE Computer, pp. 69-74, March 1994.

[22] Silicon Graphics Inc., Mountain View, CA 94029, IRIX Admin: Disks and
Filesystems, 1996. Document Number 007-2825-001.

342

NEXT
DOCUMENT

Distributed Large Data-Object Environments:
End-to-End Performance Analysis of High Speed Distributed Storage
Systems in Wide Area ATM Networks

William Johnston, Brian Tierney, Jason Lee, Gary Hoo, and Mary Thompson

Imaging and Distributed Computing Group,
Information and Computing Sciences Division
Lawrence Berkeley National Laboratory',
University of Califomia, Berkeley, CA, 94720

Abstract

We have uw - .0ped and deployed a Distributed-Parallel Storage System (DPSS) in several
high speed ATM WAN testbeds to support several different types of data-intensive appli-
cations. Architecturally the DPSS is a network striped disk array, but is fairly unique in
that its implementation allows applications complete freedom to determine optimal data
layout, replication and/or codin redundancy strategy, security policy, and d; namic recon-
figuration.

In conjunction with the DPSS, we have developed a “top-to-bottom, ¢ '-to-end”™ perfor-
mance monitoring and analysis methodology that has allowed us to characterize all
aspects of the DPSS operating in high speed WAN environments. In particular, we have
run a variety of performance monitoring experiments involving the DPSS in the MAGIC
testbed. which is a large-scale. high-speed, ATM network and we describe our experience
using the monitoring methodology to identify and correcting problems that limit the per-
formance of higa speed distributed applications.

Finally, the DPSS is part of an overall architecture for using high-speed, wide area net-
works for enabling the routine, location independent use of large data-objects. Since this is
part of the motivation for a distributed storage system, we describe this architecture.

1. The work described in this paper is supported by ARPA, Computer Systems Technology Office
thup://ftp.arpa.mil/RescarchArcas.html) and the U. S. Dept. of Energy, Office of Ere gy Rescarch. Oftice of
Computational and Technology Reseaich, Mathcmatical, Information, and Computational Scicnces Diviston
thitp:/fwww.er.doc.gov/preductionfoctr/mics), under contract DE-AC03-76SFO0098 with the University of
California. Authors: wejohnston@ ibl.gov, ticrney @ george.Ibl.gov, Lawrenze Berkeley National Laboratory,
mail stop: B50B-2239, Berkeiey, CA. 94720, ph: 510-486-5014, fax: 510-436-6363,
http://www-itg.Ibl.gov). This is report no. LBNI.-39064.

343

1.0 Introduction

We arc developing a strategy for using high-speed networks as enablers for storage sys-
tems whose components are distributed around wide area networks. The high-level goal is
to dramatically increase the location independence for access to “large data-objects™
These objects - typically the result of a single operational cycle of an instrument, and of
sizes from tens of MBytes to tens of Gbytes - are the staple of modern analytical systems.
It is further the case that many of the instrumentation systems that generate such
data-objects arc used by a diverse and geographically disiributed community: examples
from the scientific community include physics and nuclear science high energy particle
accelerators and detector systems, large electron microscepes, ultra-high brilliance X-ray
sources, etc. There are correspondingly complex instrumentation systems in the health
care community that generale large data-objects. Our approach is an architecture that uses
a collection of highly distributed services to provide flexibility of managing storage
resources, reliability of access, and high performance, all in an open environment where
the use-conditions for resources and stored information are guaranteed through the use of
a strong, but decentralized, security architecture.

In this paper we will discuss some of the aspects of our distributed large data-object archi-
tecture, but we focus on the issues for achieving high performance for distributed systems
in wide-arca ATM networks - a problem that is clearly central to the basic premise of our
approach.

As developers of high-speed network-based distributed services, we often observe unex-
pectedly low network throughput and/or high latency. The rcason for the poor perfor-
mance is frequently not obvious. The bottlenecks can be (an.. have been) in any of the
components: the applications, the operating systems, the device dnivers, the network
adapters on either the sending or receiving host (or both), the network switches and rout-
ers, and so on. It is difficult to track down performance problems because of the complex
interactior. between the many distributed system components, and the fact that problems
in one place may be most apparent somewhere else. Further, these distributed applications
are complex, bursty, and have more than one connection in and/or out of a given host at
one time and simple tools like ttcp do not adequately simulate these conditions.

We have developed a methodology and tools for monitoring, under realistic operating con-
ditions, the behavior of all the elements of the application-to-application communications
path in order to determine exactly what is happening within this complex system. Our
approach is to instrument both the applications and the storage systems to do timestamp-
ing and logging at every critical point in the data handling sysiem. We have also modified
some of the standard Unix network and operating system monitoring tools to log “interest-
ing” events using a common log format that can be correlated with the instantaneous
behavior of the application, the storage system, and the transport between them. This
allows us to characterize the performance of ali aspects of the distributed systems and net-
work in detail, using “real-world” operations. This monitoring functionality is designed to
facilitate identifying bottlenecks, performance tuning, and various sorts of network perfor-

344

mance research. It also allows us to measure throughput and latency characteristics of our
distributed application code.

The goal of the performance characterization work is to produce predictable, high-speed
components that can be used as building blocks for high-performance applications, rather
than having to “tune” the applications top-to-bottom as is all too common today.

In this paper we describe an architecture for handling large data-objects, the elements,
implementation, and applications of that architecture. We also describe in some detail the
architecture and performance of a prototype application and a distributed - parallel data
server. called the DPSS (Distributed Parallel Storage Server, formerly known as the Image
Server System, or ISS) that is used to drive many of the experiments, and is a key element
of the large data-object architecture. Finally, we describe some techniques for monitoring
and analysis of the elements of the architecture, and somc experimental results using these
techniques.

2.0 Distributed Large Data-Object Management Architecture

The advent of shared, widely available, high-speed networks is providing the potential for
new approaches to the collection, storage, and analysis of large data-objects. In one
example, high-volume health care image data used for diagnostic purposes - e.g. X-ray
CT, MRI, and cardio-angiography - are increasingly collected at tertiary (centralized)
facilities, and may now be routinely stored and used at locations other than the point of
collection. In this ~ase, the importance of distributed storage is that a hospital (in fact,
almost any instrumentation scenario) may rot provide the best environment in which to
maintain a large-scale digital storage system, and an affordable, easily accessible,
high-bandwidth network can provide location independence for such storage. In the case
of health care, the importance of remote end-user access is that the health care
professionals at the referring facility (frequently remote from the tertiary imaging facility)
will have ready access to not only the image analyst’s reports, but the original image data
itself.

This general strategy extends to other fields as well. In particular, the same basic
infrastructure is required for ;emote access to large-scale scientific and analytical
instruments, both for data handling and for direct, remote-user operation. See [1].

The basic elements of a distributed large data-object architecture include:
* data collection and the instrument-network interface

¢ on-line storage that is distributed throughout the network (for both performance and
reliability)

¢ processing elements - also distributed throughout the network - for various sorts of
data analysis

* data management that provides for the automatic cataloguing (metadata generation)
of the data being stored

® data access interfaces, including application-data interfaces

345

¢ (transparent) tertiary storage (“mass storage™) management
¢ user access to all relevant aspects (application, data, metadata, data management)

¢ transparent security that provides access control for all of the systems components
based on the resource-owner’s policy

Within the network storage system in particular - a “middleware™ service - the
architectural issues include:

¢ distributed storage system operation and performance
® user access methodologies
® security architecture

These elements all need to be provided with flexible, location-independent interfaces so
that they can be freely moved around the network as required for operational or other
logistical convenience.

Figure 1 illustrates the overall architecture. It indicates the central role of a high-speed
cache, which is used both for initial data collection, and to provide subsequent high-speed
access by applications.

Briefly. the data flow and information generation proceed as follows. The data-objects are
first cached on the DPSS (whose components are frequently scattered all over the
network). From the cache it is “processed™ as required, but typically to produce several
pieces of information to be included in the “index”. Metadata is generated (by analyzing
the object, collecting information forwarded by the object generator, or by associating
separate information with the object). This metadata is typically kept in “tagged-file™ text
files. “Derived™ information is generated; in the case of image-like objects, this includes
typically “thumbnail” and screen-sized representations, “typical” frames from a
video-object, etc. The data-object itself is replicated in a tertiary storage system. All of the
information related to the data-object is combined into a Web document that represents a
comprehensive index and source of meta-information for the data-object. At this point
the data-object has a comprehensive “index”, a permanent instance in tertiary storage, and
(perhaps) a temporary instance in the network cache. A Web interface can be used for
searching, browsing, and accessing the metadata, or the object itself. (See Section 2.3,
“Data Managemer.t, Mass Storage, and the User Interface™ and Figure 3, below.) This
same Web interface is used to manage the migration of the data-object in to, and out of,
the cache. The user or application never has to deal directly with the rertiary storage
system - it is managed in a transparent and location independent manner. Applications that
access the data-object can be launched directly from the Web interface, or can use the Web
interface to migrate the object to cache, and access it there. Access methods for the
data-objects are typically provided as loadable libraries for the application, and provides
for application or data specific views of the data-object. (These “objects™ are not persistent
C++ objects: the “object™ consists of access methods (of which there may be several), the
metadata (including “derived” objccts™), and the data-object itself, all of which typically
reside in different locations.) As indicated in Figure 4 (Distributed-Parallel Storage

346

WWW user/
application x
interface ¥
b —— —— —
cache
large data-object ’ location and
application
e e e — e -
large data-object MSS-1 derived
access method S-2 data-ohject(s)
o r S-3
; Bt
high-speed, 7 1
distributed \ -
cache [
(DPSS) process and |
¢ hka . create Web
‘ gc;md ~derived™ database
hugh-speed § 1 objects, as required) -
. WAN
e || |
data-ob!ect in mass
generation storage systemys)

Figure 1 Overall Architecture for a Distributed, Large Data-Object Environment

System Architecture) the access library translates the application view of the objcct to
DPSS logical block addresses.

Together, these clements of a large data-object management architecture have provided
effective management for several classes of data-objects. (See [2] and [3}.)

2.1 Data Collection

Instrumentation systems are at the front-end of many distributed iarge data-object
environments. Examples include particle accele wor deteciu.., Earth environment
monitoring satcllites, and medical imaging systems. These sources generate essentially
continuous data streams, but ones that have *“natural” boundaries that define “objects™. For
many of the instrumentation systems that we are interested in, one of the primary issues is

347

getting the data out of the instruments and onto the network. One of the circumstances that
has led to both the interest in, and practicality of, the architecture being described here is
that general purpose workstations now have memory and IO bus structures that are fast
enough to acquire, structure, and send to the network, significant bandwidth data streams.
(For example, the newest (mid-1996) DEC Alpha and Sun UltraSparc workstations can
deliver 20 MBytes/scc of user data to a network interface.) This is an important capability
because it means that the only special hardware that is required to bring instruments
on-line is the interface between the workstation and the data source, and even this
interface may be provided in “software™ using off-the-shelf DSP-based 1/O boards.

The frontend workstation acquires the raw data, formats it as “objects” by adding or using
metadata from the experiment environment, and then sends the objects into the distributed
environment. The data collection workstation frequently also serves as a buffer so that
brief interpretations or slow-downs in the network do not result in loss of data

2.2 Network Cache

A high performance widely distributed network storage system is an essential component
of a network-based large data-object environment. Distributing the components of a
storage system throughout the network increases its capacity, reliability, performance, and
security. Usable capacity increases in conjunction with a widely deployed. generalized
security infrastructure that can support dynamic construction of systems through
brokering and automated acquisition of resources. (See {4].) Reliability increases because
storage systems that can be configured from components that have as little as possible in
common (e.g., location) provide the resilience that comes from independence (transparent
redundancy of data is also possible). Performance is increased by the combined
characteristics of parallel operation of many sub-components, and the independent data
paths provided by a large network infrastructure. Security is also potentially increased by
having many independent components, each of which has local and independent
enforcement mechanisms that can limit the scope of a security breach.

The Distributed-Parallel Storage System (“DPSS”, also known as the “ISS”) is an
experimental system in which we are developing, implementing, and testing these ideas.
In most configurations, the DPSS is used as a network-striped disk array designed to
supply and consume high-speed data streams to and from other processes in the network.
(See [5f and [6].)

The DPSS is essentially a “logical block™ server whose functional components are
distributed across a wide-arca network. (See Figure 2) illustrating the DPSS architecture.)
The DPSS uses parallel operation of distributed servers to supply image stream” fast
enough to enable various multi-user, “real-time”, virtual reality-like applications v an
Internet / ATM environment. There is no inherent organization to the blocks, and in
particular, they would never be organized sequentially on a server. The data organization is
determined by the application as a function of data type and access patterns, and is
implemented so that a large collection of disks and servers can operate in parallel,
enabling the DPSS to perform as a high-speed data source or data sink.

348

block-level

ccess i e
PSS dank servey DPSS disk wrver

singhe
high-bandwidth
sink {or sowce)
—
o Client
— et ATM 9
§] switch Sega .h:-l
| R
. IPPATM notward
data trapment ll _‘ Y Tt aved oot
sncams strrans RpRACARR
o - . multiph; virtust
- PH 4 cHcwits)
£| b sELwrl e "I 5
bt % | :ﬁi %] . rovwrncd data .
- WA
Lo - 3E
physical block « bogreal name logical block 81
QueSts wanlaa fequests z g
. data oy O é ¥
cnteot -
Figure 2 Distributed-Parallel Storage System Implementation

At the application level, the DPSS is a semi-persistent cache of named data-objects, and at
the storage level it is a logical block server. Although not strictly part of the DPSS
architecture, the system is usually used with an application agent library called a “data set
structure access me.hod”. This component provides an object-like encapsulation of the
data, in order to represent complex user-levc!' data structures so that the application does
not have to retain this information for each ditt. . *r* data set. The function and interface of
the access methods are left to the application domain, but one simple example is for video
data. In this case the access method allows applications to request data by “frame™
number. The access method converts the application requests into logical block requests.
These logical block requests are then sent to the DPSS Master which serves two functions,
request and resource management. The Resource Manager maintains data set definitions,
and the Request Manager is responsible for mapping the logical block requests to physical
block requests. The Resource Manager also deals with interactions with the storage
servers to determine available storage (a storage server is an independent entity and may
deal with several DPSS Masters) and to establish the “security context” that provides the
scope of control for various resources.

A security model and supporting security architecture provides for enforcing “‘owner”
defined management policy for the physical resources and access policy for the data.

349

2.3 Data Management, Mass Storage, and the User Interface

In any scenario where data is generated in large volumes and with high throughput, and
especially in a distributed environment where the people generating the data arc
geographically separated from the people cataloguing and using the data, there are several

important issues: automatic generation of a least minimal metadata; cataloguing of the
data and the metadata as the data s received (or as close 1o real time as possible);
transparent management of multiple tertiary storage svstems; and facilitation of
co-operative rescarch by allowing specified users at local and remote sites immediate
access to the data, and incorporation of the data into other databases or documents.

HYE Ima wmx«g «= badiex of collection .| Query Resulis
LUNG SIRVCTURE

L Glwipen spawry wiss
mﬂwb!mmm Ay ehe
T g iy mwwfmuwm%mum mpuemen |

Matehud Tont

Laptlr Ll me aum
éﬂm

C 2 example of an approach 1o this capability is "lmgLib” (see [7]) which uses World
Wide Web based tools to provide this library-like functionality. Semi-automatic
cataloguing of incoming data is done by extracting associated metadata and converting it
into text records. by generating uuxihiary metadata and derived data, and by combining
these into Web documents. Tertiary storage management is provided by using the remote
program exccution capability of Web servers to provide transparent access to different
kinds of mass storage systems that then return the data-objects to the Web server, or, as is
the case in several of our applications (and typically with large data-objects), move the
data to a DPSS cache for access by applications. (For an example of a Java applet
accessing the DPSS, see hitp//www-itg Ibl gov/ISS/browserfiss2d html.) Where the
data-object is stored on tertiary storage. and how 1o access it. are all part of the Web-based
“object-index .

Figure 3 illustrates some of these points. It shows a browser interface on the left, and on
the right the results of automatically building a sub-collection of data-objects as the result
of a scarch on the textual metadata. The information about the data-objects that result from
the search is shown as a collection of thumbnails, associated pointers to other types of
derived data, and a pointer to the original data-object. For the data-objects that reside on
tertiary storage (a tape-robot based mass storage system in this case), there is an option for
forcing migration of a data-object back to the on-line cache if the data of interest is not
already there. The example in Figure 3 is fairly simple, but in the heaith care information
system mentioned below, the original video data-object cannot be compressed and
requires a special application to view the original data-objects (directly from the DPSS),
or via JPEG or MPEG “movies™ that are derived representations (see [2]).

2.4 A Health Care Information System Application

An example of a medical application that uses this distributed large data-object
architecture is a system that provides for collection, storage, cataloguing, and playback of
video-angiography images using a metropolitan arca ATM network.

Curdiwangingruphy2 is used to monitor and restore coronary blood flow,
and though clinically effective, the required imaging systems and
associated fucilities are expensive. To minimize the cost of such procedures,
health care providers are beginning 1o concentrate these services in a few
high-volume tertiary care centers. Patients are typically referred to these
centers by cardiologists operating at clinics or other hospitals; the centers
then must communicate the results back to the local cardiologists as soon
as possible after the procedure. The advantages of providing specialized
services at distant tertiary centers are significantly reduced if the medical
information obtained during 1’ ocedure is not delivered rapidly and
accurately to the referring ph.can at the patient’s home facility. The
delivery svstems currently used to transfer patient information between
facilities include interoffice mail, U.S. Mail, fax machine, telephone, and
courier. Often these systems are inadequate and potentially could introduce
delays in putient care. (See {3].)

Using a shared, metropolitan area ATM network and a high-speed distributed data
handling system, video sequences and still images are collected from the
video-angiography imaging systems, stored, and accessed by a remote user. The image
Jata are .ent through the network to storage and analysis systems, as well as directly to the
usees at clinic sites. Thus, data can be stored and catalogued for later use, data can be
dehivered nive from the imaging device to remote clinics in rcal-time, or these data flows
¢ 21l be done simultaneously. Whether the storage servers are local or distributed around
the network is entirely a function of the optimal logistics. There are arguments in regional

2. Cai lo-angiography imaging involves a two plane. X-ray video imaging sysiem that producces trom sev-
cral 1o tens of minutes of digital video sequences for each patient study for each patient session. The digital
video 1s organized as tens of data-ohjects, cach of which are of the order of 100 MBytes.

351

health care information systems for centralized storage facilities away frem the hospital
environment, even though the architecture is that of a distributed system. (See {8].)

This application is in operation in the CalREN, ATM network in the San Francisco Bay
Area, and is described in some detail in [2].

3.0 Network Storage: The Distributed-Parallel Storage System

A central issue for the approach of using high-speed networks and distributed systems as
the foundation of a large data-object management strategy is the performance of the sys-
tem components, the transport / OS software, and the underlying network. Problems in
any of these regimes will negatively affect our strategy, but such problems can usually be
fixed if they can be isolated and characterized. A significant part of our work with
high-speed distributed systems is developing a methodology and tools to locate and char-
acterize bottlenecks.

We have designed and implemented the DPSS, as part of an DARPA-funded collaboration
know: as the MAGIC gigabit testbed” (see [9]), and as part of the U.S. Department of
Energy’s high-speed distributed computing program. This technology has been quite suc-
cessful in several environments. The DPSS provides an economical, high-performance,
widely distributed. and highly scalable architecture for caching large amounts of data that
can potentially be used by many different users. Our current implementation provides for
real-time recording of, and access to large, image-like, read-mostly data sets. In the
MAGIC testbed, the DPSS is distributed across several sites separated by more than 1000
Km of high speed network that uses IP over ATM as the network protocol, and is used to
store very high resolution images of several geographic areas. The first client application
of the DPSS was “TerraVision”, a terrain visualization application that uses the DPSS to
let a user explore / navigate a “real” landscape represented in 3D by using ortho-corrected,
one meter per pixel images and digital elevation models (see [10)). TerraVision requests
from the DPSS, in real time, the sub-images (“tiles™) needed to provide a view of a land-
scape for an autonomously “moving” user. Typical use requires aggregated data streams as
high as 100 to 200 Mbits/sec. Even in the current prototype system the DPSS is easily able
to supply these data rates from several disk scrvers distributed across the network.

The combination of the distributed nature of the DPSS, together with the high data rates
required by TerraVision and various load simulators, makes this a good system with which
to test a high-speed network in a inuch more realistic manner than ttcp-like tools allow.

3. MAGIC (Multidimensional Applicatons and Gigabit Internetwork Consortium) is a gigabit network test-
bed that was established in Junc 1992 by the U. S. Government’s Advanced Research Projects Agency
{ARPA). The testbed is a collaboration between LBNL. Minncsota Supercomputer Center, SRJ, Univ. of
Kansas, Lawrence, KS, USGS - EROS Data Center, CNRI, Sprint, U. S. West, Southwest Bell, and Splitrock
Telecom. More information about MAGIC may be found on the WWW at: hitp://www magic.net/

3.1 DPSS Architecture

As mentioned, the DPSS is essentially a “logical block™ server whose functional compo-
nents are distributed across a wide-area network. The DPSS uses parallel operation of dis-
tributed servers to supply high-speed data streams. The data organization is determined by
the application as a function of data type and access patterns, and is implemented during
the data load process. The usual goal of the data organization is that data is declustered
(dispersed in such a way that as many system elements as possible can operate simulta-
ncously to satisfy a given request) across both disks and servers. This strategy allows a
large collection of disks to seek in parallel. and all servers to send the resulting data to the
application in parallel, enabling the DPSS to perform as a high-speed data server.

The implementation is based on the use of multiple low-cost. medium-speed disk servers
which use the network to aggregate multiple server outputs for kigh performance applica-
tions. To achieve high performance all types of parallelism are exploited, including those
avatlable at the level of the disks, controllers, processors / memory banks, servers, and the
network (see Figure 2).

The security model for the DPSS involves accommodating several different resource own-
ers. The context established between the Data Set Manager (DSM) (see Figure 4) and the
disk/storage servers reflects agreements between the owners of physical resources (disks)
and an agent that i1s providing storage to a user community. This context enforces the disk
usage agreements. The separate context established between tlie DSM and the users
retlects the use-conditions imposed by the data “owner™. and provides for ensuring access
control that enforces those use-conditions. For more information on the security architec-
ture see [4].

The overall data flow involves *third-party” transfers from the storage servers directly to
the data-consuming application (a model used by mest high perforinance storage sys-
tems). Thus, the application requests daia, thesc fequests are translated to physical block
addresses (server name, disk number, and disk block), and the servers deliver data direcuy
to the application.

3.2 Client Use of the DPSS

The client-side (application) use of the DPSS is provided through a library-based API that
handles initialization (for example, an “open™ of a data set requires discovering all of the
disk servers with which the application will have to communicate) and the basic block
request / receive interface. It is the responsibility of the client to maintain information
about higher-level organization of the data blocks; to maintain sufficient local buffering so
that “smooth playout” requirements may be met locally; and to run predictor algorithms
that will pre-request blocks so that application response time requirements can be met.
The prediction algorithm enables pipelining of the operation of the disk servers with the
goal of overcoming the inherent latency of the disks. (Sce {§] and [6]).

None of this has to be explicitly visible to the user-level application, but some agent in the
client environment must deal with these issues because the DPSS always operates on a

353

best-cffort basis: if it did not deliver a requested block in the expected time or order, it was
because it was not possible to do so. In fact, a typical mode of operation is that pending
block requests are flushed from the disk server read queucs when the next set of requests
arrive from the application. Fven if the DPSS cannot send all the requested data to the
application, it is possible that the data was at least read from disk into the DPSS memory
cache, where it will remain available for faster retrieval (for a short time). The application
may then routinely re-request some fraction of the data. This deliberate “overloading” of
the disk servers ensures that they will be kept busy looking for relevant blocks on disk and
caching them in server memory. This approach ensures that the data pipeline stays full,
and that disk server resources are never idle.

As mentioned, a DPSS client typically communicates with the DPSS through an
application library called a “‘data structure access method library™ (see Figure 4).)

returned data stream . single
¢“third-panty” transfers directly from the high-bandwidth
storage servers to the apphication) sink “or source)

Disk Servers

o Bunk storape
o Mok deved aoeesns conteod

; shared security WL.QQ Application
i context - 2 (client)
shared secunity data
contead - | data fequess
Application
ety
DPSS Master data
Resource . R}
Manager logical block structure
e oo dok e 8 requests access method
: l“-‘ I rowline s (Jata strwtun to Togal
. \'r‘\‘ur,dnk TUMNILL deLesy e ';‘:‘:"""l-' il
* ayslem Acuriy cenhost - _\ N
L euahlihment po Data Set Manager
:> T U WLHEY LR
physical Request Manager|] mo 4 DPSS APl
block) ::fu‘:l‘;'\:::nmm‘ e ::: :: '::-::L:m“ tchent-side hbrary)
Figure 4 Distributed-Parallel Storage System Architecture

3.3 DPSS Implementaticn

In our prototype implementations, a typical DPSS consists of several (four - five) Unix
workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo. etc.). each with several
(four - six) fast-SCSI disks on multiple (iwo - three) SCSI host adapters. Each workstation
is also equipped with an ATM network intertace. A DPSS configuration such as this can
deliver an aggregaied data stream to an application of about 400 Mbits/s (50 Mbytes/s),
using these relatively low-cost, “off the shelf” components, by exploiting the parallelism
provided by approximately five disk servers, twenty disks, ten SCSI host adapters, and five
network interfaces.

354

The software implementation is based on Unix interprocess communication mechanisms
and a POSIX threads programming paradigm to manage resources on the disl servers (see
[11] and [5)). The primary operating systems (Sun’s Solaris, DEC’s OSF, SGI's IRIX, and
FrecBSD) all have slightly different implementations of threads, but they are close cnough
that maintaining a single source is not 100 difticult.

The implementation supports a number of transport strategies, including TCP/IP, RTP/IP
[12] and UDP/IP. RTP and UDP do not guarantee reliable data delivery and never retrans-
mit. Lost data are handled at the application level. This approach is appropriate when data
has an age-determined vaiue: data not received by a certain time is no longer useful, and
therefore should not be retransmitted. This is the case for certain visualization scenarios.
(This paper. however, focuses on TCP performance issues.)

Other papers describing the DPSS, including a paper that describes the implementation is
detail [5). are available at http://www-itg.lbl.gov/DPSS/papers.html.

3.4 TerraVision and tv_sim: Prototype DPSS Client and Monitoring Tool

TerraVision uses the DPSS client library’s logging facilities to log all data movement
events associated with an application session. It uses the a standardized log format to mon-
itor a data block’s progress from the storage server disks, throueh the network, and into
the application client.

We have also developed a simulator program, n_sim. that can generate data requests and
receive data blocks from the DPSS in a manner similar to TerraVision’s. Using this ro-
gram we can generate synthetic request patterns, or repeatediy 1'se actual TerraVision. :s-
sion data request traces, and attempt to verify and analyze performance bottlenecks in the
DPSS, the application, or in the network in a controlled environment. TerraVision is a
complex software suite running on complex hardware, and patterns of requested data are
complex. tv_sim can emu.ute the TerraVision data request patterns through the
trace-driven operation facility, but is a “null™ application that can be run at much higher
overall request rates than .cal applications, and can eliminate possible effects of data pro-
cessing or graphics processing on the network throughput.

The rv_sim data request sending rate, in terms of block lists per second and blocks per list,
can be set by the user, as can the saving of history logs in the DPSS standard format. The
sender can also use trace / playback files of actual TerraVision sessions instead of gencrat-
ing its own lists of block requests, as mentioned above. Additionally, the user can specify
the use of multiple data sets, overall running time, and other runtime characteristics.
tv_sim and the DPSS thus can be configured to impose almost arbitrary load patterns on a
network anu to record the results.

The TerraVision data request trace is kept in terms of logical block request so that all
aspects of the configuration of the DPSS may be changed - the number of storage servers,
their location in the network, the data layout, ete. - to facilitate many types of experimen .
In other words, real application data request patterns may be applied against different con-

355

figurations of the distributed storage system, network, etc., because the logical block
requests are independent of any aspect of the physical organization of the storage system.

4.0 Performance Monitoring Mechanisms

Network performance and distributed operation characteristics are obvious! . an important
factor in the architecture that we are describing. There are virtually no behavioral aspects
of an ATM *“network” that can be taken for granted, even in an end-to-end ATM network.
By “network™ we mean the end-to-end data path from the transport API through the host
network protocol (TCP/IP) software, the host network adaptors and their device drivers,
the many different kinds of ATM switches and physica' link bandwidths, and then up
through the corresponding software stack on the recciver. Further, the behavior of different
elements at similar places in the network architecture can be gnite different because they
are implemented in different ways. The combination of these aspects can lead to complex
and unpredictable network behavior.

We have built performance and operation monitoring into the storage system and several
applications, and have designed tools and methodologies to characterize the distributed
operation of the system at many levels. As .equests and data enter and leave all parts of the
user-level system, synchronized time:stamps are logged using a comraon logging format.
At the same time, various operating system and network parameters may be logged in the
same format. Several of these instrumented applications and tools are described below.

4.1 DPSS Timing Facility

A request for a data block takes the following path through the DPSS (see Figure 5). A
request (a list of blocks) gc=s from the application to the Request Manager, where the log-
ical block names are translated to physical addresses (server: disk: disk offset), then the
individual requests are forwarded to the appropriate disk servers. At the disk servers, the
data is read from disk into local cache, and then sent to the application (which has connec-
tions to all the relevant servers). Precise timestamps are gathered before and after each
major function, such as name translation, disk read, and network send. All timestamps are
then logged by the DPSS servers. The timestamps are also sent with the data block to the
re:iesting application, where logging can be performed using the DPSS client library.

Timestamp consistency is provided by the GPS clock-based network time protocol (NTP
— described below), which allows us to make precise throughput and latency measure-
ments throughout the DPSS system and underlying network. Instead of trying to analyze
the aggregate delay between sending a request and receiving the associated data block, we
can pinpoint delays to within narrowly-specificd steps in the data path.

to other DPSS

@ START

DPSS Request

s ,
z Manager TerraVision 4
> thhw h nanw: pedueat Mocke z
:-3 tramlation vd ¢ @ 3

from other DPSS

j 4 mvhlock @ e blocks

‘\

= Hme stam
@ P thmngs ik tora Sun Spare 16-51, 50 KB blocka

./’@\
/

DPAS disk server 7 mvhiock

(15 3
>
w 4 mvblock @
A\ Vy

memory cache

24 ms I bloch avg.
disk o cache

(53 753
S ©

|

Figure § DPSS Performance Characterization Points and Optimal Average

Timings

4.2 ON and Network Layer Monitoring

To complement the monitoring at the application fevel and in the DPSS, we alvo monitor
varous operating svstem and network conditions. We currently collect and log the follow-
ing types ot imformaton:

We have modihied “netstat”™ and “vimstat

TCP rettansmits

CPU usage (user and system)
CPU interrupts

AAL 5 mformation

ATM switch buffer overflows
ATM hosts adapter butfer overflow

"4 10 do logging. nefstar provides the contents of

various network-related data stroe ves, while vmistat repos. statistics on, among other
things, virtual memory, Cisk, e Jacuvaty. Both programs were modified to present
only a relevant subset of their inionsation in the common logging format, and netstar was

357

modified to poll and report continuously (it normally provides only a snapshot of current
activity). We typically poll at 100 ms intervals, and since the kernel events are not times-
tamped, the data obtained this way represents all events in this interval.

4.3 Common logging format

To casily process the several gigabytes of log files which can be generated from this type
of logging, all events are logged using a common format:

keyword: hostname: seconds: nano-sec: data; data: data:.....;

The logging format is a semi-colon scparated list of fields. The “keyword” is a unique
identitier describing what is being logged. Bv convention, the first part of the keyword is a
reference to the program that is doing the logging (e.g.: DPSS_SERV_IN.
VMSTAT_SYS_CALLS. NETSTAT _RETRANSSEGS, TV_REQ_TIL.E). Each log record contains
both the hostname of the system on which the event occurred and a timestamp. The times-
tamp 1s mcdeled after the format retumned from the Unix “gettimeofday™ call. and is
logged with a numerical precision of one nanosecond. (We expect to be able to get the
NTP svachronized accuracy of the umestamps down to better than one microsecond
through a combination of the recently increased available precision of GPS signals and the
use of real-time clock boards in the systems under study.)

The end of every log record can contain any number of “data” elements. These can be
used t» store any information about the logged event that may later prove useful. For
example, for the NETSTAT_RETRANSSEGS event, there is one data clement, and it contains
the number of TCP retransmits since the previous poll time, and the OPSS_START_WRITE
event data elements contain the logical block name, the data set ID, a “user session™ ID,
and an internal DPSS block counter. The log records for a given data block are associated
by virtue of being collected and carried in the data block request message as it works its
way through the system.

4.4 Log File An2lysis Tools

Tools to analyze log files include perl scripts5 to extract information from log files and
write data files in a format suitable for using gnuplot® to graph the results. These tools
were used 1o generate the graphs in Section 5.0.

When trying to identify the source of specific problems (such as those that showed up in
the early WAN experiments described below) a good deal of exploratory, interactive anal-
ysis of the log data was the key to identifying the important factors, and graphical analysis
of individual, exceptional events has proven to be the most important aspect of analysis
when one is trying to identify the causes of specific behavior. There are several character-

4. Both netstat (displays network staustics) and vmstar (displays virtual memory statistics) are tools avail-
able on m21y Unix systems

5. For more information see. htp://www metronel.com/perlinfo/per]5. htm}
6. For more inturmation see: hitp://www.cs.dartmouth.edw/gnuplot_info himl

358

istics that have made graphical analysis a powerful technique. What turned out to be the
most important was the ability to treat “lifelines™ (the temporal trace of a single block
from application request all the way through the system to receipt of the data) as identifi-
able entities that could be individually manipulated and quantitatively analyzed.

In order to enable the quantitative analysis of individual events the graphical tools need to
have several characteristics. Probably most important is.that the significant features (e.g.,
all of the time points in a lifeline) must be grouped into graphical objects that can be
manipulated as units. Further, it turned out that being able to “sketch™, annotate, and create
special measurement tools were all important capabilities, and so a versatile graphics
drawing tool is very important. (This is tllustrated in Figure 7 and Figure 10.)

The gnuplot graphics device driver for FrameMaker MIF files groups graphics primitives
at two levels: the graphics primitives that result from plotting data from one file are one
“object”, and at the next level down, each associated set of line segments are sub-objects.
Therefore, cach of the log file elements, such as block histories. flushed block histories.
TCP retransimits, etc.. are organized as objects, and the individual block life-lines are kept
as sub-objects within these larger objects. The FrameMaker graphics tool can manipulate
these objects and sub-objects independently. as well as providing the annotation, measure-
ment. ¢tc., mentioned above. and this proved invaluable in isolating, measuring, and mark-
ing significant events.

4.5 Use of NTP

To be able to perform meaningful analysis of a network-based system, precise timestamps,
based on the synchronized clocks of all systems is essential. All MAGIC testbed hosts run
the *xntpd’ program [13}, which synchronizes the clocks of each host both to time serversS
and to cach other. (End-to-end transit times, including speed-of-light and switch delays,
are of the order of 10 ms.) The MAGIC backbone segments are used to distribute NTP
data, allowing us to synchronize the clocks of all hosts to within about 250 microseconds
of each other. The location of the NTP servers in the MAGIC network are shown in Figure
9 (below).

This synchronization between host clocks allows us to characterize the operation of the
system in useful and surprising ways. (See Figure 7. below.) For example, the DPSS name
server, DPSS disk server, and application are typically on different physical hosts scattered
over the network. For the events that characterize the operation of the system, | millisec-

7. FrameMaker (hup://www.adobe.com/prodindex/framemaker/main.htmi) 1s a mult-platform desk-top
pubhishing program. MIF is its interchange file format that represents both text and graphics.

8. There 1s considerable craft and lore 1n interfacing a precision time source to an NTP server platform, and
we readily acknowledge Craig Leres of the LBNL Network Research Group (http:/ec.1bl.gov) for working
with Dave Mifls and his students at Univ. of Delaware to “fine tune” every aspect of the particular GPS clock
and «crver platform OS that we use in our experiments and in the MAGIC testhed Also sce [14] for a
des m0n of the charactenistics of NTP in the MAGIC environment using this GPS receiver and server
commnahon.

359

ond resolution is enough to establish the relationship between the impact of an event at
one point in the network, and the origin of the event somewhere else in the network.
Therefore 250 microseconds clock synchronization of all systems is required.

5.0 Example Analysis

This section presents some of the types of analysis that we have been able to do using the
methodology and tools described in the previous section. The specific examples represent
a snapshot of the state of our performance mcasurements during early 1996. As will be
illustrated, there are several aspects of the overall system that dramatically affect perfor-
mance. Two of these aspects that are changing rapidly are workstation ATM interfaces and
ATM switch buffer management, and the numbers quoted here are primarily intended to
be illustrative rather than an analysis of specific products. For example, over the past two
years the throughput of a Fore Systems SBA-200 interface card operating in a Sun SS5-20
has gone from 55Mbits/second to 105 Mbits/seconds, due to upgrades in both OS and
device driver software, and in the same time frame the Fore ASX-200 ATM switch buffers
have increased in size by 50 times. It is therefore certain that specific numbers like these
will have changed by the time this paper is published.

The following sections describe performance results and analysis based on our monitoring
and logging mcthodology as applicd to the DPSS. TerraVision. and tv_sim programs
(described above) operating together in ATM LANSs and the MAGIC WAN.

5.1 End-to-End Performance Experiments

Experiments have been performed to examine the detailed interaction between a DPSS,
whose disk servers are distributed over both ATM LANs and a wide-arca ATM network,
and the TerraVision application. Our initial monitoring experiments have focused on
issues important to high-performance, highly distributed applications such as the TerraVi-
sion / DPSS combination. Using the log files described above, we are able to generate
graphs (shown in the figures in this section) that have proven to be extremely usctul in giv-
ing a detailed view of the throughput and latencies at each point in the distributed system:
that is. in the apphication, the DPSS. and in the network.

5.2 LAN Experiments

Figure 6 represents a set of traces. collected by monitoring during application-driven oper-
ation, that illustrates the general operational characteristics of the DPSS, and specifically
shows the strategy used by the TerraVision application in order to keep the overall “pipe-
line™ of the storage system full.

Generally, each line style in the graphs indicates data from a different DPSS disk server.
and different line styles are also used for “flushed™ data requests (described below). The
graphs plot “real time™ on the horizontal axis, and the monitoring points on the vertical
axis. The timestamps are collected at the monitor points, which represent critical points in
the data request-response process from application to distributed storage system and back.

360

- I /®
Gpp_foUen e
sart wie
el remd -] j
f :? g6 il
start_read b : ¢ B
4 L
SCIACE i *
; :
=
faser ol - :
Tiss dop
“rss flush jog™
masier
. | z
PP SRS T To0n TToHnT TON IR0
-
£: 4
£3 | Time (ms)
s
Figure 6 One Server LAN Test

{ATM LAN, one 8§8-20 as server, tv_sim on DEC J000/600)

{Sec Figure 5.) Each line — a “life-line” — represents the history of a data block as it moves
through the end-to-end path.

Referning to Figure 6, TerraVision sends a list of data block requests every 200 ms, as
_shown by the neardy vertical lines starting at the app_send monitor pomnts. The mital

single life-lines fan out at the server_in monitor point as the request lists are resolved into
requests for individual data blocks. Each block request 1s first represented individually in
the read queue (start_read).

Notice that many life-lines terminate at end_read. and that a few also end at srart_read.
Any individual data request that is not satisfied by the disk server before the next request
list arrives is flushed (discarded) from all the server queues, but the data is retained in the
server memory cache. For example. in Figure 6 the life-lines that started at 10,400 ms that
were terminated at (8) did so because the TCP write delay (of unknown cause) at @
“trapped” a previous set of blocks in the TCP write buffer. Block 1equests that were in the
DPSS writc queue when the next request list arrived (at 10,600 ms) are flushed from the
queue. However, some of these blocks were re-requested in the 10,600 ms list, and these
re-requests are satisfied very quickly because the data is in the disk server memory cache.
This 18 seen in the nearly vertical life-lines at @ {The “Hush on next request” hehavior is

361

hecessary to avoid deadlocks in the server, and provides a pre-fetch mechanism for the
applications.)

Referring to Figure 7, using these life-line graphs it is also possible to get fairly detailed

F time for 20 blocks 1o ge from one
. SETVEY wiier 1o the apphoion reader
CP foteans e b 20 me g 0 2
r = . 355 Mbvser
Sppreceive - -
SEAL WO Pl
P oo
¥
:
el read "
sy
% * B
i G cache tusc ..»:“" "
*
start rew]
ook
_ * :
SCENCE 1N e d% i 5ty picat ; :
Foy drk re o disk remt 4
Fileos fasterthan B fast ik bt o | C
Fid e the other read i ¥l
Fide .._.....*1 roh
i ’*‘ %
master oot ; 8 s {
(‘ : C 20 block werape time 1o} :{
B SRR, ; 8 %
/§ write Blocke ty petwink i "';
WIS i | R6Sme i
¥ i
i D 20 block averse tinwe o fovate '
b g Sl : £ .: i ¥
; abback an cuhe o a8 me | ;
3Wm%wt *2 e s N i R s s Sou B Mt S e s
000§ ! 8200
e], ’ . >
2l & f‘ E_time 1 read 20 bocks from theee disks .
= £ ol 123 s avg 615 A
) g £ MByies 163 7 Mbieo)
- Time (ms)
Figure 7 Detail From a Two Server, LAN, Experiment

information on individual operations within the disk servers. For example, when two
life-lines cros:: in the area between start_read and end_read. this indicates that a read from
one disk was faster that a read from another disk. (This phenomenon is clearly illustrated
for the server represented by the crossing solid lines in Figure 7 at @.} This faster read
might be from disks with faster seck and read times {which is not the casc in the
experiment represented in Figure 7, as all participating systems used identical disks) or it
might be due to two requested blocks being adjacent on disk so that no seek is required for
the second block.

Lok
o
B

Further, in Figure 7 we can also sec:

at “B” two different characteristic disk reads (one with an 8 ms read time and one
with a 22 ms read time),

at “C” the average time to cache a block and enter it into the network write queuc is
about 8.6 ms;

at "D” the time to parse the incoming request list and see if the block is in the mem-
ory cache is about § ms;

at “E” the overall server data read rate (four disks operating in parallel) is about 8
MB/sec;

at "F" the actual throughput for this server while dealing with a set of real data
requests is about 39 Mb/s (this throughpu. .s receiver limited);

at “G", there are two cache hits (blocks found in memory) as a result from previ-
ously requested, but not sent. data being requested. {(Flushed requests are not shown
in this figure.)

Figure 8 illustrates “correct” opecration of multiple servers. This LAN-based two-server

Monitoring points

TOP_retrans
app_receinve
H i
(] i t/
start_write
1 t A
] 1] *; {
end_read >
1 1 i t it i /D 4
11 i ! 3 7 &
start_road P b -
’ Cd
72 e
SUEVCE_in
§ '
i
master_out
masier_n J
1583 fog” ——
1582 Jog" — -
app_send
RODO R200 R400 K600 KROO 9000 92013
.
Time (ms)

Figure 8 Twao Server Test (ATM LAN, two §5-20s as servers, tv_sim on DEC

3000/600)

experiment shows the interaction of life-lines for blocks from different servers. and a case
where the independent servers are behaving almost “perfectly™: There are very regular
block 'elivery patterns that alternate almost one-for-one between servers.

5.3 Wide Area Network Experiments

Of particular interest i1s the experiment for the three-server configuration operating in the
MAGIC WAN testbed (Figure 9). The graphs for the LAN experiments (Scction 5.2) show

363

PSS
Mouer

=

S
DPES i dsender
{sember 11

SONET
Metwark

O Ekm.
A
f;iu'g;zg 1w ATM switch

T
eney in

=15 ms It

b 8

$IPss

Koverr

ool , G : 4 Sprint
Univ of Kankas B PSS o0
Lawrence: ! { aender 3

Figure 9 The MAGIC Network: Test Configuration

mostly expected behavior: smooth operation, no unexpected latencies, no TCP
retransmissions, and so on. However, in the WAN case illustrated in Figure 10, one sees
many TCP retransmissions and some extraordinarily long delays (up to 5500 ms),

53.1 WAN Experiment Environment

End-to-end performance experiments in the wide area use data block request traces from
the TerraVision application and then use tv_sim 1o replay the wraces. The traces for the
application running in the MAGIC WAN environment were obtained with TerraVision
running on an SGI Onyx with eight 150 MHz MIPS R4400 processors, 256 MB of main
memory {(4-way interleaved), two RealityEnginell graphics processors, and a single Fore
Systems 100 Mb/s TAX] ATM interface. (This configuration is the mnimum required to
get good interactive visualization of 3D lundscape.)

Experiments were run on the MAGIC ATM testbed, using the configuration illustrated in
Figure 9. A five-minute TerraVision session trace of data block requests was captured. and
then using this list of block requests, v _sim was used to repeatedly request and receive
those blocks. Experiments were run using a DPSS with one. two. and three disk server
configurations. (The number of disk servers is independent of the application data request
strategy and transparent to the application, except for establishing the data transfer con-

nections). Log files were collected in the various distributed components for satisfied and
unsatisfied block requests, TCP retransmission information, CPU usage, and ATM cell
loss in the host adapters and ATM switches (though in this case the switches did not accu-
rately report cell loss).

5.3.2 Analysis of a WAN Problem

In the early operating environment of MAGIC, it was very difficult to get anywhere near
the expected throughput with multiple DPSS servers driving a single application. This
resulted in a series of cell-pacing experiments done by our collaborators at U. Kansas.
Lawrence (sec [15] and [16]) that eventually detcrmined that if every source (e.g. DPSS
disk server) was paced at I/N of the final link bandwidth that the total throughput
increased significantly. While this solved an immediate problem. it was not a general
sofution, so we went back and conducted a series of experiments attempting to pinpoint
the specitic cause of the problem. These experiments and their results are described in
[17): however, here we illustrate some of the analysis.

Referring o Figure 10, first, let us analyze what the performance monitoring shows
directly. If we look at the long-delayed block life-lines (emphasized in the figure) we see
the characteristic behavior of a data block getting into the write queue (start_write
monitor point) and then incurring some very long delays getting to the application. These
long delays are almost always accompanied by one or more TCP retransmit events. The
reason that the server is blocked as a whole (actually just one application is blocked since
eich application has its own TCP connection to the disk server) is that once a block is
written 1o the TCP socket. the user level flushes have no etfect, and TCP will re-send the
block until transmission is successful, even though the data is likely no longer needed and
is holding up newer data. The server unblocks when the a retransmission is successful,
letting the next write proceed. The impact of this is substantial. Following received data
lifelines back in time, the time that the data transfers stalled can te identiticd. These points
are labeled (at the top of the graph) with the subscript “b™ for blocked. (The three servers
are labeled A, B, and C.) The transmission path (TCP circuit) has recovered when the next
transmission proceeds at a “reasonable™ rate, and the received data event just prior to the
first of a group of “normal” receives is labeled with a subscript *a™ for unblocked. At the
bottom of the graph, the effective transmission from the servers for this application data
path is indicated by the horizontal bars. The impact of this blocking and unblocking is that
the effective throughput of all three servers combined (on a 100 Mbit/s data path that has
no other traffic) is of the order of | Mbit/s. Unfortunately, at the time of this experiment
we were not able to get accurate reporting from the switch “A” in Figure 9. However, what
we surmise happened is the following.

The ATM switch A is where the three server strecams come together, and this switch has a
per port output buffer of only about 13K bytes. The network MTU (minimum
transmission uni*) is 9180 Bytes (as is typical for ATM networks). So, the situation is that
three sets of 9 KBy IP packets are converging on a link with less than 50% that amount of
buffering available, resulting in most of the packets (roughly 65%) being destroyed by cell
loss at the switch output port. The TCP congestion window cannot get smaller than the
MTU, and therefore TCP's throttle-back strategy is pretty well defeated: on average, every

'
o
o

(XAUQ 1S U0 WIS™A] ‘194135 S® SY1-6§ 3941 ‘NVM ALY IIOVI) 1591, Jaadag dauy | 01 2ind1y

SHIaAD
pamya
o iR e
eath vy

saages paviadsi Aprowdeadons
(swi) sy 10 Buryoorg pasingsuis

000t 000°1

“apa iy Gy
A
staveds
pertil 8
SHUBSI
d0f oy
SFERIaR O
i iR REERS
Bruunwade
Al

Y

pRas e

PR pus

A ks T SHIE e iy spgppmoeii s tgpprmscony
oo oo . - -

siutod dupionuop

AIM U

stanandde

SUOIRE g
HE

: 4
Bopsurnosdoon son. SONENIALL oy aoaan i

LSOl e dorousansn, Lpamen 8o qraaun
Bepsuraardot e apa, LOPTANIAL, oy dasas

retransmit fails, even at TCP’s “lowest throughput” setting, because this smallest unit of
data is still too large for the network buffers.

Although we could not “prove™ these assertions because we could not get accurate switch
cell loss information, this analysis of Figure 10 provided enough information that the
network operators upgraded the switch at A. The new switch as 600 KBy of buffering,
which allows TCP’s congestion algorithms to work correctly, and throughput is now up te
an “average” of 30 Mbit/s per data path, as should be the case. For a more detailed analysis
of this experiment, see [17).

6.0 Conclusions

In order to achicve high end-to-end performance in widely distributed applications. a great
deal of analysis and tuning is needed. In the MAGIC testbed we are evolving a methodol-
ogy that includes network-wide precision time sources and extensive instrumentation for
time, latency, and throughput at all levels of the network, operating system, and applica-
tions. We monitor a large collection of parameters simultancously (from the ATM level all
tb_ way up through disk performance on the storage servers and the application’s use of
the delivered data) in order to identify and correct performance bottlenecks. This
top-to-bottom, end-to-end approach is proving to be a very useful mechanism for analyz-
ing the performance of distributed applications in high-speed wide-area networks, and the
type of graphs presented here are very useful and informative.

Apart from the immediate need for performance in MAGIC. the larger question that we
hope to address by this methodology is whether high-performance use of networks, com-
puting platforms, middleware, and applications has to be treated as a “system”™ problem
(that is, all componcats considered and optimized together) or whether, as we find and cor-
rect problems, we will end up with an environment in which widely distributed, high-per-
formance applications can be build by composing “stock™ componcnts, both hardware and
software.

Some advice for those building distributed applications: timestamp all critical operations
using a uniform log format, and r:n NTP on all hosts, so that the sort of analysis described
here is possible.

7.0 Future Work

We are refining the tools and the measurement techniques that capture and log events, and
several of thie other MAGIC consortium members are doing the same. (For example, a
number of the “events™ currently collected are the results of watching system variables for
some interval, and then using the interval mid-point as the time stamp, when we should be
getting the actua’ event timestamp.) We are exploring the use of the University of Kansas
“Data Stream Driver” [18] to improve our timing accuracy for operating system events.

We hope to be able to use the log files from the DPSS client library as “playback™ fil.s for
‘netspec’[19]. which is a distributed network performance measurement tool that is being
designed and developed at the Telecommunications and Informations Sciences

367

Laboratory, University of Kansas. netspec supports multiple connections per session, and
it will support multiple protocols. This will allow us to easily recreate many different
traffic scenanios. This work was presented at the 1996 DARPA Workshop on Wide Area
ATM Performance (see http://www.tisl.ukans.edu/Workshops/ATM_Performance/), and
one result of this workshop is there will be more work put into working with the
University of Kansas to incorporate this logging and graphing methodology into netspec
to create a general purpose set of tools.

This work is ongoing, and progress reports will be published at
http://www-itg.lbl.gov/DPSS.

8.0 References

[1] Johnston, W. and D. Agarwal, “The Virtual Laboratory: Using Networks to Enable
Widely Distributed Collaboratory Science™ An NSF Workshop, Virtual Laboratory
whitepaper. (Sce http://www-itg.1bl.gov/~johnston/Virtual.Labs.html)

(2] Johnston, W., Jin Guojun, Gary Hoo, Case Larsen, Jason Lee, Brian Ticiney, Mary
Thompson, “"Distrnibuted Environments for Large Data-Objects: The Use of Public
ATM Networks for Health Care Imaging Information Systems™,
(hup://www-itg.Ibl.gov/~johnston/APIL 1. 1.fm.himD)

(31 Kaser - LBNL - Philips CalREN project. See
http://ww w-itg.Ibl.gov/Kaiser/LKP/homepage. .html.

4] Johnston, W. and C. Larsen. “Security Architectures for Large-Scale Remote
Collaboratory Environments: A Use-Condition Centered Approach to Authenticated
Global Capabilities™ (draft at http://www-itg.1bl.gov/~johnston)

{5] Tierncy. B., Johnston, W., Chen, L.T., Herzog. H., Hoo, G.. Jin, G., Lee, J., “Using
High Speed Networks io Enable Distributed Parallel Image Server Systems”,
Proceedings of Supcrcomputing ‘94, Nov. 1994, LBL.-35437. Available from
htip:/fwww-itg.1bl.gov/DPSS/papers.html.)

[6] Tierney. B., Johnston, W., Herzog, H., Hoo, G., Jin, G., and Lee, J., “System Issues
in Implementing High Speed Distributed Parallel Storage Systems™, Proceedings of
the USENIX Symposium on High Speed Networking, Aug. 1994, LBL-35775.
(http://www-itg.Ibl.gov/DPSS/papers.himl.)

[7] ImgLib: See http:/www-itg.lbl.gov/ImgLib/ImgLib_intro.html

[8] Johnston, W. and A. Allen, “Regional Health Care Information Systems: Motivation,
Architecture, and Implementation,” LBL Technical Report 34770 (draft), Dec. 1993,

[9] Fuller. B.. I. Richer “The MAGIC Project: From Vision to Reality,” IEEE Network.
May. 1996, Vol. 10, no. 3.

[10] Lau. S, and Y. Leclerc, “TerraVision. a Terrain Visualization System,”, Technical
Note 540, SRI International. Menlo Park, CA, Mar. 1994,
(http://www.ai.sri.conV/~magic/terravision. htm})

[11] Stevens, R. W, TCP/IP IHustrated. Yolume 1 The Protocols, Addison-Wesley
Professional Computing Series, 1994,

368

12)

[13]

(14]

[15]

[16]

L17)

(18]

[19]

Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson “RTP: A Transport
Protocol for Real-Time Applications™, An Internet Request for Comments (RFC),
January 1996. Available from: ftp://ds.internic.net/rfc/rfc 1889.txt

Mills, D., “Simple Network Time Protocol (SNTP)”, RFC 1769, University of
Delaware, March 1995. (http://www.eccis.udel.edu/~ntp/)

Johnston, W, Tiemney, B., Herzog. H., Hoo, G, Jin, G, Lee, J. “Time and MAGIC”,
from the MAGIC Technical Symposium, Minneapolis. Minnesota, 1994. Available
from http://www-itg.Ibl.gov/DPSS/talks. html.

Evans, Joseph B., Victor S. Frost, Gary J. Minden, *“TCP and ATM in Wide Arca
Networks”, CNRI Gigabit Network Workshop *94.
(http://www.magic.net/tcp/overview.html)

Ewy, B. J.. 1.B. Evans, G.J. Minden, and V. S. Frost, “TCP/ATM Experiences in the
MAGIC Testbhed™, Fourth IEEE Symposium of High Performance Distributed
Computing, August 1995, pp. 87-93.

Tierney, B., W. Johnston, G. Hoo, J. Lee, “Performance Analysis in High-Speed
Wide-Area ATM Networks: Top-to-Bottom End-to-£nd Monitoring™, IEEC
Network, May, 1996, Vol. 10, no. 3. LBL Report 38246, 1996. (Also see
http://www-itg.lbl.gov/DPSS/papers.html.)

Buchanan, B., Menon, R., Nichaus, D, *“The Data Streams Kernel Interface™,
Telecommunications & Information Sciences Laboratory, Unive: sity of Kansas, Feb.
1996.

Jonkman, Roclof J.T., “"An Ovcrview of NetSpec™, Telecommunications &
Information Sciences Laboratory, University of Kansas.
(hup://www.tisl.ukans.edu/Projects/AAl/products/netspec/)

369

NEXT
DOCUMENT

Understanding Customer Dissatisfaction With
Underutilized Distributed File Servers

Erik Riedel
Department of Electncal and Computer Engineenng
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15213
riedel’w cmu edu
Tel 412-268-3056
Fax 412-268-3010

Garth Gibson
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh PA 15213
garth gibson{@cs cmu edu

Abstract

An important trend in the design of storage subsystems is a move toward direct network
attachment Network-a.tached storage offers the opportunity to off-load distnibuted file
system functionality from dedicated file server machines and execute many requests
directly at the storage devices For this strategy to lead to better perfformance as perceived
by users, the response ime of distributed operations must improve In this paper, we
analyze measurements of an Andrew File System (AFS) server that we recently upgraded
in an effort .0 improve client performance in our laboratory While the onginal server’s
overall utilization was only about 3%, we show how burst loads were sufficiently intense
to lead to periods of poor response time significant enough to trigger customer
dissatisfaction In particular, we show how, after adjusting for network load and traffic to
non-project servers, 50% of the vanation in client response time was explained by
varniation in server CPU utilization That is, clients saw lor.g response times in large part
because the server was often over-utilized when it was used at all. Using these measures,
we see that off-loading file server work in a network-attached storage architecture has the
potential to benefit user response time Computational power in such a system scales
« ~ctiy with storage capacity, so the slowdown during burst periods should be reduced.

This rescarch 1s sponsored by DARPA/ITO through ARPA Order D306, and 1ssued by [nd:an Hcad
Division. Naval Surface Warfare Center. under contract NO0174-96-0002 The views and conclusions
comained in this document arc those of the authors and should not be wntcrpreted as representing official
pohcics, enher cxpressed or imphed. of any sponsoring or supporing agency. mcluding the Defense
Advanced Research Proiects Agency and the Unied States Government

37N

1. Introduction

Recent trends in the computer industry have greatly increased the demands for common,
shared i ~rormation repositories In most cases, these have taken the form of distributed
file systems that are shared across a workgroup, organization-wide, or even world-wide.
A distnibuted file system, with a number of machines acting as “servers” and a much
larger number of “clients™ have bocome popular due to a number of factors, including
separation of admunistrative concemns. sharing of data, and transparency [Spasojevic96]

Advances in other compu.ing technologies have made possible many novel applications
that are placing increasiny demands on distributed storage systems. The delivery of video
and audio, large-sca’ : parallel applications, and the growth of the Internet have increased
demands on distri ated information systems both in terms of the resources required by
individual applicati~ns and the aggregate demands made by a continually increasing
number of clients

Distributed File Systems

Figure 1 - Traditional Distributed File System

At the core of all distnibuted 1nformation systems lies a set of server resources that are
becoming increasingly loaded as the demands increase A traditional distributed file
system model, where “storage” is simply embodied in the disk and device dnver. is
illustrated in Figure | This picture explains in part why increasing load on distributed
file systems often 1equires fast file servers - the file server must traverse two protocol
stacks for each client request Data must move from attached disk drives, across the SCSI
bus, through the server’s memory system, back across the system bus. down the network
protocol stack and. finally. onto the network wire The server has very little “interest” in
the data. yet it must move 1t through its mem-1y hierarchy - possibly several times - n
order to satisty all the protocol lavers involved

In conjunction with this pressurc toward using faster machines as file servers, recent
vear: have ceen rapid development. hoth in terms of areal density and in the raw
bandwidth that can be provided off the platters of fixed storage devices On top of thes:
trends. perhaps the largcst change comes from standardizing storage interfaces The
adoption of the SCSI intertace for storage devices allowed storage vendors to optimize
below 2 comme= ~rotocol, and application and file system developers to optimize above
it By specifyn. separate high-lcv.! “logical ™ interface and a physical interrace, SCSI
made possible numerous optimizations inside disk controllers including RAID,

372

transparent recovery management, dynamic remapping, and storage migration A
common interface 1o operating system software allowed users to buy drives based on
price and performance, rather than on compatibility requirements with other parts of their
computer systems This model has led to typical, high-performance distributed file
systems that today look more like Figure 2 There is one interconnect for communication
between clients and servers (IP or IPX over ATM or Ethernet). and another for
communication between servers and disks (SCS1)

Distributed File Systems (2)
Figure 2 - Actual Distributed File System Architecture Today

The difficulty with this architecture is that a good portion of the overall systoin power is
“dissipated” in the server system that bridges the gap between SCSI and the distributed
file system protocol used by clients With relatively slow storage devices and relatively
stow networks. this additional overhead has until now been hidden among other
himitations The continued development of disk technology has made possible products
with sustained data rates of up to 12 MB/s shipping today and 40 MB/s does not luok
unreasonable by the end of the decade Fibre Channel interconnects also eliminate the
tradittonal SCSI bus a a bottieneck ATM. Fast Ethernet. and Myrinet provide client
network rates of 12 MB/s today and 100 MB/s in the near future These advances mean
that the amount of room to “hide” inefficiencies in distributed file server implementations
1s shrinking dramaticaliy

The study described 1n the rest of this paper examines the requirements placed on file
server architectures by studving the behavior of current distributed file system
technology Specifically. we have analyzed the system-level behavior of an AFS
{Andrew File System) server in our environment The following sections will present the
behavior we have observed and the ;.essure on file server performance

Section 2 provides a brief overview of AFS and presents our measurement methodology,
tools. and environment Section 3 provides a summary of some of the workload
charactenstics we observed Section 4 discusses the factors that affect AFS nerformance
as perceived by users Section § discusses the potential available through the use of
network-attached storage devices Finally, we conclude in Section 6 and discuss avenues
of future work

2. Experimental Methodology

2.1. Andrew File System

At Carnegie Mellon (and at hundreds of other large institutions around the world) the
Andrew File System is used by nearly all computer users. The major contribution of AFS
over previous distributed file systems such as the Network File System (NFS), was the
focus on scalability of server resources The goal of AFS was to support a campus-wide
network of workstations and users with a relatively small amount of file server resources
[Howard88]. The primary way in which AFS addressed this goal is through the use of
local disk for extensive client-side caching. Each client workstation in an AFS
environment dedicates a portion of its local disk space as a cache for frequently accessed
remote data Data in client caches is kept up-to-date through the use of a strong
consistency protocol based on callbacks When a client accesses a particular file from an
AFS server, the server marks a callback for that data and client and promises to inform
the client when the data is changed. Rather than having a large number of clients
constantly checking in at the file server to see if data has changed, the responsibility for
cache invalidation lies with the server.'

In the Spring of 1996, our lab upgraded its AFS server in response to our users’
complaints about AFS performance A major motivation in writing this paper is to
identify and detail the performance reasons behind the upgrade and determine the
implications for AFS distributed file systems built on network-attached storage
architectures

22 Measurement Environment

The measurements reported here were taken from a single file server over the course of a
two month period at the beginning of 1996. This server contained all of the project
volumes used for research in the Parallel Data Laboratory (PDL) The server was a Sun
SPARCstation 4/60 with 24 MB of memory serving 20 volumes representing a total of 8
GB of data in 4 partitions The clients were fifteen Alpha AXP machines (Turbochannel
models 300, 400, 500 and 600 and PCI models 200 and 400) nine IBM RS/6000 250s
located in a single laboratory, and fifteen additional machine .." varying types, ranging
in power from DECSstation 5000s to a SPARCstation 20. in this lab and in the offices of
students and faculty The workload, a diversc set of activities one would expect from a
medium-sized research group, included software development, document preparation,
data analysis and simulation

The School of Computer Science network, to which all these machines are connected,
consists of an Ethernet segment for each floor of its butlding, with an additional segment
for the central machine room where all AFS servers are housed, all of which are
connected to a single bridged backbone The cs.cmu.edu AFS cell, in which our
measurements where taken, consists of 25 (primarily SPARCstation) dedicated servers
providing home directories, repositories for shared, locally-maintained sofiware

' Another goal of AFS s 1o senve as a wide-arca distnbuted file svstem that can span the entire globe in
order to facilitate thus, AFS provides a single global namespace that 1s divided at the top level of the
hierarchy 1nto a number of cells. cach of which represcnts a specific orgamization or adnunistrative domain
The bastc unit of distnibution in AFS 1y a volume, a related sct of files assigned for a specific purpose and
renresenting a specific allocation of disk space Each cell contains a sct of well-known datahase server
machines that maintain a mapping of which volumes reside on which of a number of file server machines.
The file server machines have disks attached that are divaded into logical partitions | each of which uolds
somc number of volumes

374

collections, and volumes assigned to specific research projects. Larger projects often
“own” an entire server which houses all of that group’s project volumes The server
under test was running AFS 3.2 with local patches under the Mach 2 6 operating system
and the cucnts were running several different operating syvstems with AFS versions
ranging from locally modified 3 | to 3 4beta

23 Analysis Tools

Traces of rile server activity were taken with the aid of a tracing package developed by
the Coda group at Carnegie Mellon {Mummert94] A number of trace points, including
most system calls. all accesses into the buffer cache. and all disk requests, within the
operating system were annotated with log entries Logs were collected in a kernel buffer
and periodically extracted and shipped over the network to a second machine that
gathered the traces on its local disk and periodically transfer them to tape. This facility
allowed the collection of very detailed system traces without much effect on
performance. The Coda group measured a performance impact of between five and seven
pe.cent in their studies. Traces were collected almost continuously over a two month
period resulting in over 4 GB of data

In addition to this data, client and server AFS activity was measured through the use of
the AFS xsrar facility which collected hourly summaries of operations performed,
agpregate performance per operation type, as well as details on request sizes - We also
used rxdebug and vy 1o collect information on active clients and volume use patterns
from the server Statistics of the server and clients over three months represent:d an
additional 400 MB of raw data

To track performance of the network connecting our machines, we collected statistics
derived from a periodic measurement of the round-trip time to the server and client
network segments Qur measurement machine (ozone) executed a 30-seccend ping every 5
minutes noting the average round-trip time and packet loss rate to a selected number of
cliants (one on each floor with client machines) and to the server

We developed a set of scripts 10 process the trace and summary data and used the Matlab
numerical computation and visualization system to provide plots and statistical tests In
the following sections we will provide plots of measured data as well as means,
varian. 2s, and Pearson r correlation coefficients, and 7~ coefficients of determination We
use the Pearson coefficient of determination to quantify how much of the vanation in a
set of measurements can be accounted for by the characteristics of underlying system
factors [Kirk90]

3. Workload Characteristics

In this section, we summarize a number of basic parameters of the wc.kload recorded in
our traces Specifically the effectiveness of client caches, the mix of AFS operations at
both the chents and our server. and the transfer size distributions at the server.

? Duc to the tughly distnbuted nature of AFS and our desire to measure a real workload, it was not possible
to track all of the clhients that made requests to this particular server, nor can we deternune exactly what
cliemt activity was directed to this panicular server Thas introduces some amount of “noise” into our data,
making some vanations more difficult 1o explain

375

3.1. Client Caching

As shown in previous work, the hit ratio for data in the local AFS cache is extremely
good [Spasojevic96, Howard88] Table | gives the average hourly hit ratio across the
twenty clients for which we have the most complete data. This data emphasizes the well-
established fact that there is a high degree of temporal locality in user access streams, and
that local disk caching in AFS removes a considerable burden from the file server The
data shown represents measurements from a single week of traces - specifically the week
of January 29, 1996 to February 4, 1996 This representative week-long period will be
used throughout the rest of the paper.

970
618

data
metadata

9205 994
221 769 166 175 339 208

data 991 994 987 999 996 993 995 993 984 99|
metadata 623 229 450 999 9082 993 991 969 990 952

Table 1 - Client Cache Hit Ratio

3.2. Operation Distribution

Table 2 shows a breakdown of the most frequently used AFS operations and their relative
populanity. The Clients column shows the total for the 20 clients reported above over the
course of the same week. Note that the number of client and server requests does not
match up because this is not a closed system - there were additional clients making
requests of the PDL server, and the PDL. clients made use of other AFS servers (as we
wili discuss in more detail later) The total amount of data transferred by clients was 993
MB in FetchData requests and 520 MB in StoreData requests The server provided a total
of 750 MB of data via FetchData and accepted 955 MB via StoreData requests.

AES Operation Chents - Server

total fraction total fraction
FetchStatus 748,620 68 0% 412,695 43 4%
StoreStatus 20,085 1 8% 22.642 2.4%
FetchData 174,717 15 9% 62,288 6.5%
StoreData 46,630 42% 32,414 3.4%
CreateFile 15,407 1 4% 17,089 1 8%
RemoveFile 17,242 1.6% 20,422 2.1%
BulkStatus 0 0.0% 244,636 25.7%
GetTime 50,568 4.6% 122,393 12.9%
GiveUpCallbacks 28,343 2.6% 17,298 1 8%

total 1,101,612 951,877

Table 2 - Distribution of AFS Operations

376

3.3. Request Sizes

Table 3 shows the distribution of request sizes over the course of a week. As seen in
previous studies, small requests dominate the mix, while most of the bytes are moved in
large requests [Spasojevic96, Baker91). 80% of reads and 65% of writes are for less than
8 kilobytes However, for StoreData requests, more than two-thirds of the bytes are
moved at the largest request size This means that system designeis must consider
optimizations that maximize the bandwidth of the largest requests without adversely
affecting the latency of the majonity of small operations.

Request Size FetchData _ StoreData

up to 128 bytes 19,503 313% 7607 235%
129bytesto | K 3,663 5.9% 3.196 9.9%
1Kto8K 24,858 399% 10,035 310%
8Kt 16K 2,127 3.4% 2,244 6 %%
16 Kto32K 1,889 30% 2,510 7.8%%
more than 32K 10,245 164% 6,789 21.0%

L total 62,285 32,381

Table 3 - Distribution of Request Sizes

4. Impacts on User-Perceived Performance

4.1. Server Utilization

These statistics provide some idea of the typical work being performed by an AFS file
server, but how does the performance of the server figure into customer purchasing and
system sizing decistions? The Parallel Data Laboratory recently upgraded its AFS server
from a dedicated SPARCstation 1 to a brand-new dedicated SPARCstation 20 with about
5 times the rated performance This upgrade was done to a large extent in response to the
increasingly vocal complaints of slow performance by our users. In fact, little data was
consulted in the decision to upgrade this server. In an attempt to understand what effect
the resources available on our server has on user performance, we took a look at the load
on the original server after the upgrade. Given the traces described above, we can in
hindsight attempt to better understand how server load relates to file system performance
and customer satisfaction

The top chart o F:gure 3 shows the fraction of the server CPU spent in the AFS
Sfileserver process over the course of a week, averaged over ten minute intervals. As we
can see, the CPU on the server is mostly idle. Although - re do see a number of peak
periods in which the utilization reaches as high as 65%, the mean CPU utilization is less
than 3% This is a disturbing result Were we wrong to spend about $10,000 for a new,
fast file server torepla. ~ ‘ow, mexpensive server that is only 3% utilized?

377

CPU Time in fileserver Process

@

. L L} T ; LS
40}+) 4
T 30t .
Q
e
220} .
10} -
0 . AN "\ i S ‘\ :\ . _,."':\”:‘ ~'\"‘\‘\~,_ -~\".‘.\ R 1 ‘\'\. N .-~ S '. MW eeees N ‘\‘“"
0 1 2 3 4 5 6 7
Day [Hourly Averages - 29 January to 4 February]
Number of Completed Disk Operations
50 7 T T ¥ L T
40+ .
@
230 i
Q
3
.,=°_ 20t .
L/ ‘
0 A I T 1 A I} —_—t
0 1 2 3 4 5 6 7

Day [Hourly Averages - 29 January to 4 February]
Figure 3 - CPU and Disk Utilization

A similar effect i1s seen in the plot of disk activity in the lower chart of Figure 3. This
chart shows the total number of physical disk accesses completed in each of the same 10
minute intervals It is harder to talk about percentage utilization in this case, but the three
drives on this server should be able to sustain considerably more than the 50,000
accesses’hour (14 accesses/second) that correspond to the highest point on the chart The
average is less than one access/second over three disks Again, a negligible total average
load

Simply looking at these numbers, we might be tempted to conclude that this five year old
machine is performing adequately and there is no need for an upgrade at all.> So how do
we explain our users’ complaints” We clearly needed some other measure that we could
use to gauge users’ perception of the performance of the system Since overall utilization
1s not the problem, we surmised that looking at response time might prove more
enlightening

*In fact. the upgrade policy at large AFS sitcs 1s rumored to be gencrally insensitive to utilization as * i
The algornithm used can roughly be paraphrased as, when customers complain, begin with the oldest
component of the system and continue to replace cquipment with newer models untl complaints subside

378

4.2. Client Response Time

The client data that we collected provided hourly samples of the number and total elapsed
time of all AFS operations of each type completed by that client in that hour We chose to
use the average response time for FetchStatus operations as our measure of user-visible
performance because 1) it is the most frequently-called operation, 2) in the absence of
outside influences, it does an approximately constant amount of work on each call (since
data fetches in AFS may be as large as several hundred kilobytes, but most files are much
smaller than this, FetchData delays are expected to be much more variable) and 3) we
found an #° coefficient of determination suggesting that 50% of the variation in the
response times of FetchStatus and the per-kilobyte latencies of FetchData are correlated,
as shown in Figure 4

If we again look at the average response time in Figure 4, we see significant variation -
ranging over an order of magnitude. We hypothesize that users of AFS, accustomed o
local disk access times (due to high local cache hit ratios described above) will be
significantly affected by high variance in response times, particularly when the effect
lasts for significant lengths of time, such as the hourly intervals shown in this chart
Based on this, we began searching for the causes of high variance in user response time

Companson of Average Response Time for FetchStatus and FetchData

500+ 4
i FetchStatus
400L ; - FetchData (per kbyte)]
g3004% W
2001; 1 é]
oty | 4 il }‘ ’!ﬁ i f ” |
IR LI T i i - [1d A !
\!l ot 1; ;1;& ku { !\"\ ‘v H' it ‘
. A \‘/ﬂ‘i;\v’”;ijj‘ \}“/ N AA '«L:L"i‘, L,V‘l \'I;\J \"\W\J f \AM(;\J ‘}‘1 u"‘\w\
0 1 2 3 4 5 6 7

Day [Hour'y Averages - 29 January to 4 February]
Figure 4 - FetchStatus and FetchData Performance

In order to convince ourselves that our AFS server upgrade had indeed been worthwhile,
we performed an experiment to compare the performance of our old server and our new
server under the same workload. The numbers in Table 4 show the results of this
controlled experiment. One test client was constantly performing stat () calls at

379

random into a directory of 2,000 files. At the same time, a second client was running a
“competing” workload by continuously reading a large file from the same partition on the
same server. Both clients flushed their caches at the end of a cycle so that all operations
were handled at the server The table shows the average response time of the FetchStatus
operations that resulted from the stat () calls, the number of FetchStatus operations
completed in the five minute measuring interval, and the average throughput of the
competing process

W erage Number of Competing
Machme SPECIm9 JewchSmtus Operations Read Pransfer
. Response Time qmy) {KB/s)

SPARCstation 1+ 140 259 8,486
SPARCstation 20 690 16.7 15,291

Table 4 - Direct Comparison of Server Platforms

From this experiment, we see that the increased CPU performance of the newer machine
reduces average FetchStatus response time by 35% at periods of high server load. At the
same time, the faster machine can complete almost twice as many FetchStatus operations
in the same time interval while also providing 62% higher data throughput Since more
server processing power is clearly effective for improving client performance, we expect
to be able to find a dependence between server CPU utilization and client response time
in our trace data.

4.3. Impact of the Network

\When we first compared the CPU and disk utilization trace to the FetchStau . response
time trace, we were unable to find a significant correlation between times of slow user
response and times of high server utilization This unintuitive result led us to look for
other factors that might explain performance at the clients The most obvious factor in a
distributed system is the network between machines, so this is the parameter s.¢
examined next

The top chart of Figure S shows the average network round-trip time of pings on the lab
and machine room Ethernet segments ¢ er one hour periods We see a mean of 90 ms
and a standard deviation of 7 2 ms on the server network. and 16 9 ms 15.8 ms on the lab
segment, where most of w.ie clients were located. The lower left portion of Figure S shows
the graphical correlation between the response time of the network and FetchStatus
response time * Although not a strictly linear relationship, the Pearson r- coefficient
suggests that 35% of the variation ir: the response times can be attributed to variation 1
network performance To focus on this relationship, the correlation graph in the lower
right of Figure 5 reports only those hours where average ping time was larger than 20 ms
In this figure, a linear relationship between server response time and network response
time is more plausible This matches our expectations that the network connecting the
machines in a distnbuted system is a considerable factor in overall performance It is for
this reason that the new server .nd many of our clients are being outfitted with switched
ATM networking dedicated to the PDL in addition to the existi..g Ethernet However, we

* Directly correlated data. with 100%, of the vanation explained. would appcar as a straight he .n these
graphs.

380

also see that net'vork response time is not a complete explanation of client response time
vanance.

Average Ping Time

100 T I L T R B ¥
5 80 . |
Q) —— client segment i
E 60 server segment i) N
o i
2 il
o “\» Ivi s ""‘ ;
24\ I Y1
S VoA i\ /\. A
[A i 1. C]
oo e A/ m N] A
0 % g R S ~
0 1 2 3 4 5 6 7
Day [Hourly Averages - 29 January 10 4 February)
High Network Load
400 200 —~ %
@ X ()
E 300 E 150 x N
[[x
QO [
2 200t x X 2 100
8. X x g.
n X 9 X
&,100+*§x &’50)S(xxxf(X
s 5 g B ¥ ¥ ¥owy & -
o IR 1% o
0 50 100 20 40 60 80 100
Ping Time Ping Time
Figure § - Correlation of Response Time with Network Behavior
44. Impact of Shared Resources

Our next step was to again compare server utilization (Figure 3) to average client
response time after the periods of high network load are eliminated from the response
time trace (see the top chart of Figure 6) Again, we were not able to explain as much of
the remaining vanance as we expected Seeking an explanation for this disappointment,
we did notice an effect that we had not considered in our initial analysis. Although al! of
the project volumes for the target group were on the server we were tracing, home
directories and shared binaries were being accessed on servers shared across the
department * Since we were looking at all FetchStatus operations performed in hour-long
intervals, load on these shared servers could have a significant impact on user response
time We see a significant 7° coefficient of 65% between clients 0. .- same system type,
suggesting that about 65% of the variation in a single client's response time trace is
explained by the variation on the average response time trace of machines of the same
system type At the same time, we see a s‘rong anti-correlation (r” coefficient of
essentially zero) with clients of diftferent system types. The plots at the bottom of Figure
8 show the correlation between the response time seen at millburn (an RS/6000) and

* Instrumenting ofl of the scrvers and chieats in our environment would have been impractical duc 1o the
system changes necessan and the sheer volume of users we would han ¢ had 1o persuade te particapate

381

response time at other RS$/6000s and, in the right plot, the correlation between millburn
and some of the Alpha AXP machines in the study. Not surprisingly in hindsight, our
mistake was to overestimate the effectiveness of the replicatica of commonly used
binaries and underestimate the frequency with which users’ home directories are used in
the course of project work Although most of the user data may be stored on a fast server,
binaries and home directories stored on shared, slow servers may be a considerable drag
on user-visible performance "

Average Response Time of FetchStatus During Low Network Load

400 T L L i Ll 1)
300} % 1
£ 200} f‘]
100 vob by \)) 1
L U T/ N S R |] il
. A L e T L A b R U | S—
0 1 2 3 4 5 6 7
Day [Hourly Averages - 29 January to 4 February)
500 a 500 ——
ol &
—~ X Q
% 400 . X x 3. 400
%3004 * X X x £ 300}
£ g XX X s
x S
Baoop XX X = 200}
% X T X x
x 100 . i g 100 1
i]
0 x] 0 ¥ g & x
1} 200 400 €Ly 0 100 200 300 400
Response Time (milibu:r,) Response Time (millburn)

Figure 6 - Corr clation ¢f Response Time by Client System Type

4.5. Impact of Ser-er Utilization

In order to minimize the effect of interaction with servers other than the one we are
tracing, we filtered the response time data to include only those periods when a host was
active on our server ' Figure 7 shows the graphical correlation between average
FetchStatus response time and server disk activity and average FetchStatus response time
and server CPU activity it is apparent from the leftmost correlation chart of Figure 7 that
much of the response time s not correlated with server activity, but as we c~ild not

" W= will be taking a closer look at this effect and wall be placing read-only replication sites Jf the most-
used shared files on our upgraded server to improve aur overall performance

” A host was classificd as bring actise on the server in a parucular hour if 1t appeared in the . wlebug output
at the end of the hour Since rx/rbup provides information only for thnse chients the server has recently
interacted with, this docs not completels chimmate. but should signiicantly reduce, the fraction of
“forcign” FetchStatus requests in the averages

382

extract the delays associated with central AFS servers, we expect some amount of
uncorrelated points Neglecting data points with less than 500 disk accesses per hour in
the center plut, we see an r’ correlation of 25%, as response times are impacted by the
amount of disk work (dominated by FetchData operations) the server is already
processing when new requests arrive. In the rightmost correlation plot, we see an even
closer correlation with CPU utilization (for the same set of points as in the center plot
where the disks are busy) which explains just over 50% of the variation in response time.
This suggests that poor response times occur when the server CPU and disk are busy
(after network and “foreign™ server (.fects have been accounted for). This result fits well
with our prior observations that a considerable number of cycles are required to move
cata from a disk. through the user-level fileserver proc-ss, back into the kernel, and onto
the network and that these numbers scale with the amount of data being moved
[Gibson¢]

Average FetchStatus Response Time Across All Clieats at Low Network Load

[T T T T T - T 1

150

100} i .

(ms)

30r b .
! ' !?x % (s ’i
h xi
7 "./" i ‘/\w' W . \JW‘ /1 ‘\‘\,\/ "AJI j ‘\ .-I \/‘ AA /‘j \
0 ~ ~: VrAT— —_
0 1 2 3 4 5 6 7
Day [Hourly Averages - 29 January 1o 4 February)
High Disk Load High Disk Load
120— 50 - 50
X
100 ¢ 40} X 40; X
80 X X
-~ XX & 30 X ™ 30 X
g 60 ¢ E X I X
=~ 2 x = X x
ore % oo X
X X
20 B2 . 10} x X 10 F
ﬁ :ﬁﬁ % X J
0 0 0 —
0 20 40 0 20 40 0 10 20
Completed I/Os Completed 1/OQs CPU Utilization

Figure 7 - Correlation of Response Time with Disk Activity and CPU Utilization

We have finally discovered the correlation we have been seeking - a faster server CPU
benefits AFS users because there are bursts of CPU activity, specifically when data is
being transferred. during which server load leads to poor client response times.

383

5. Network-Attached Storage

&1. Opportunities for Network-Attached Storage

Recalling Figure 2, which shows how the distnbuted file server machine acts as an
intermediary, copying data between the chient net» k and the storag - interconnect, we
would like to develop techniques for reducing server utilization during penods of intense
transter workloads In fact, because of the speed addiessability, and distance limitations
of SCSI cabling. new storage interconnects such as Fibre Channel are increasingly
similar to client network fabrics With this convergence in mind, we propose that the
client and storage networks discussed in Section 1 be combined into a single fabric As
illustrated in Figure 8, this creates the opportunity for disks with suificient intelligence to
perform a sigmficant fraction of the clients’ file operations without the need for
intervention from the distributed file server [Gibson96}

Eliminati..g the server machine as a bottleneck for data transfers between storage and
cpplications provides a significant opportunity for improving overall performance. By not
involving a third party, common case transfers are considerably faster and the number of
requesis that can be serviced at any given time should be increased Data transfer
functions are off-loaded to the network-attached devices and the server would be
responsible only for “higher-level” distributed file system functionality

Network-Attached Storage

Figure 8 - Network-Attached Storage Architecture

There is a range of possible configurations for such a system At one end of the
spectrum, Network SCSI is being promotcd by several vendors as a means of providing
third-party transfer between clients and drives attached directly to the network
[Seagate96] All commands are processed by a server which uses the SCSI third-party
transfer interface to instruct drives to transfer data directly to clients At the other end of
the spectrum, dedicated Network File System (NFS) or Netware servers [NetApp9o.
NetFrame96] are storage systems that directly implement these distributed file system
protocols, backed by specially optimized hardware configurations Network-attached
storage proposes to provide an intermediate point The distributed file system server
would continue to be responsible for operations such a file ~pens and metadata
management, but drives would have sufficient intelligence to Yandle data transfer
requests without server intervention for each individual request In order to achieve the
desired scalability and performance. it may also be necessary to have file status and
inquiry functions handled at the dnves [Gibson96]

384

This direct transfer concept is not a new one In 1991, Randy Katz described the basic
advances that make network-attached devices feasible [Katz91] The High Performance
Storage Systems project [Watson95] is exploring these technologies in the context of
larze MPP and SMP systems based on the framework of the Mass Siorage Systems
Reterence Model [Miller88] Van Meter provides a sunvey of current products and major
research issues, including secunty, network protocols, and the changes in operating
system paradigms necessary to efficiently support network-attached devices [Van
Meter96]

Such an architecture raises several important issues Can the dnive be made sufticiently
intelligent at a reasonable cost” How do we ensure the secunty and integnty of the data
being stored” Can enough of the server functionality be off-loaded to significantly
improve both throughput and scalability” How effective will this architecture be for
meeting the needs of the clients in a distnbuted system”

5.2 Implications of this Study for Network-Attached Storage

The t.sgest lesson that we take away from the preceding analysis is that the mean
behavior of the system is essentially irrelevant. Even though the system is 97% idle when
measured in total, it is the high load periods that matter to customer satisfaction. As Table
S shows, peak loads. even at the granulaniy of an hour, are much higher than average
loads. Moreover, the distribution of operations measured over the long term, shown on
the left of Table S and similar to previous studies [Spasojevic96] is not preservea in these
peak peniods - data activity is nearly twice as common in these peaks With customer
satisfaction sensitive to response time variation, the server performance during peak loads
is likely to be more important than at other times

| Server Op usiddUIN Weekdy Total Peak Hour
total fraction hourly total fraction
FetchStatus 412695 T06% 1247 6,209 453%
StoreStatus 22,642 39% 134 175 1.3%
FetchData 62288 107% 370 4219 30.8%
StoreData 32414 5.5% 192 147 1.1%
CreateFile 17,089 29%% 101 52 04%
RemoveFile 20,422 35% 122 2,587 18 9%
GiveUpCallbacks 17,298 30% 103 326 24%
. total 584 848 2,269 13,715

Table 5 - Distribution of Server Operations

Given a high emphasis on the server performance during peak loads, off-loading the
high-cost data movement operations, as proposed by the network-attached storage
architecture, should decrease the variance in user response time significantly. even
though overall averages wiil simply be reduced from a small number to an even smalier
number The appropriate analogy 1s not to system throughput, but something closer to the
way reliability 1s measured. Changing the mean time to data loss (MTTDL) of a system
from 10 years to 100 years does not mean that one expects the system to last ten times as
long. but that the probability of a failure occurring within the next hour is reduced by an
order of magnitude We suggest that there is an analogous measure for distributed file
systems, the mean time until burst (bad) performance (MTTBP) which should be
increased so that the probability of poor response times in any given hour of work 1s

385

decreased We would expect users to be pleased if the occurrence of a period of bad
response time were reduced from once a week to once every 3 months

6. Conclusions

Modern distributed file systems such as AFS very successfully cache file data on client
machines While this ensures that average response time 1s low, it also ensures large
vartance in response time because operations that must contact remote servers are much
slower Direct measurement of these remote servers show that their overall utilization can
be quite low, 3% in our data, while users are simultaneously sufficiently dissatisfied with
performance to pay for a faster server. This study shows that the faster server is in fact
needed because, although 97% idle overall, these file servers can be intensely overloaded
during bursts of activity, leading to periods of poor response time long enough to
disgruntle users

In addition to focusing our attention on burst server loads, our analysis shows that the
distribution of operation types during bursts is different from overall distributions.
Servers should be optimized for workloads with much more data transfer than the overall
distribution suggests.

These results confirm our intuition that network-attached storage, if it can re-route most
data transfer directly to storage devices, has the potential to reduce customer response
time in two ways - 1) it avoids the copying steps at the server and 2) it off-loads the work
of data transfer from the server. reducing the chance of a bust of overutilization

Out future work, then, is to evaluate the client performance on such network-attached
storage architectures and demonstrate the implications on distributed file system design

7. Acknowledgements

This research is sponsored by DARPA/i 1O through ARPA Order D306, and issued by
Indian Head Division, Naval Surface Warfare Center, under contract N00174-96-0002

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing, official policies, either expressed or implied, of
any sponsoring or supporting agency, including the Defense Advanced Research Projects
Agency and the United States Government

We would also like to thank Chnis Demetriou and Jim Zelenka for their help is collecting
the trace data In addition. this wors was complemented by discussions among all the
members of our research group, including David Nagle, Khalil Amin, Fay Chang,
Eugene Fernberg, Howard Gobiott. Chen Lee, Berend Ozceri. David Rochberg, and
Hugo Patterson

8. References

[Spasojevic96] Spasojevic. M. and Satyanarayanan, M. “An Empirical Study of a Wide-
Arca Distributed File System™ ACM Tran...ctions on Computer Systems. May 1996,

386

[Howard88] Howard, J. et. al. “Scalc and Performance in a Distributed File System”
ACM Transactions on Computer Svstems. Volume 6, Number 1. February 1988, pp. S1-
81

(Mummert94] Mummert, L. and Satyanarayanan, M. “Long Term Distributed File
Reference Tracing: Implementation and Experience” Technical Report CMU-CS-94-213 .
November 1994,

[Kirk90] Kirk, R. Statistics: An Introduction. Holt. Rinchart and Winston, Inc. 1990, pp.
155-190.

[Ruemmicr93] Ruemmler, C. and Wilkes, J. “UNIX disk access patterns™ Proceedings of
the USENIX Winter 1995 Technical Conference. January 1993, pp. 405-420.

[Baker91] Baker, M. ct. al. “Mcasurements of a Distributed File System”™ Proceedings of
the 13" Svmposium on Operating Systems Principles, October 1991,

[GGibson96] Gibson. G. ct. al. “A Casc for Network-Attached Secure Disks”™ Technical
Report CMU-CS-96-142. June 1996.

[Scagatc96] Secagate Corporation “Barricuda Family Product Brief (ST19171)". June
1996.

[NetApp96] “Network Appliance Advantage”™ htp:/www.netapp.com/products. July
1996.

[Netframe96] “The ClusterServer 8500 Scries™ htip:/Awww.netframe.com:producis. July
1996.

{Kate91] Katz, R.. "High-Performance Network- and Channcl-Attached Storage™
Proceedings of the IEEE. Volume R0. August 1992,

[Watson95] Watson, R. and Coyne. R. “The Parallel 170 Architecturc of the High-
Performance Storage System (HPSS)” Fourteenth IEEE Symposium on Mass Storage
Systems. September 1995, pp. 27-44.

[Miller&8R] Miller. S. A Reference Model for Mass Storage Systems”™ Advances in
Computers. Volume 27, 1988, pp. 157-210.

[Van Meter96] Van Meter, R, A Brief Survey of Current Work on Network Attached
Penphcrals”™ Operating Svstems Review. Volume 30, Number 1. January 1996.

387

NEXT
DOCUMENT

Mass Storage and Retrieval at Rome Laboratory

Joshua L. Kann, Brady W. Canfield, Capt, USAF, Albert A. Jamberdino, Bernard J.
Clarke, Capt, USAF, Ed Daniszewski, and Gary Sunada, Lt, USAF
Rome Laboratory
IRAP
32 Hangar Rd.
Rome NY 13441-4114
kannj‘wrl.af.mil
315-330-4581

Abstract

As the speed and power of modern digital computers continues to advance, the demands
on secondary mass storage systems grow. In many cases, the limitations of existing mass
storage reduce the overall effectiveness of the computing system. Image storage and
retrieval is one important area where improved storage technologies are required. Three-
dimensional optical memories offer the advantage of large data density (on the order of 1
Tb/cm’) and faster transfer rates because of the paraliel nature of optical recording. Such
a system allows for the storage of multiple-Gbit sized images, which can be recorded and
accesscd at rcasonable rates. Rome Laboratory is currently investigating several
techniques to perform three-dimensional optical storage including holographic recording.
two-photon recording. persistent spectral-hole burning. multi-wavelength DNA recording.
and the use of bacteriorhodopsin as a recording material. In this paper, the current status
of each of these on-going efforts is discussed. In particular, the potential payoffs as well
as possible limitations are addressed.

1.0 Introduction

The national security requirecments of the United States have undergone fundamental
changes in just a few short years. The cold war and incumbent strategic threats have
given way to new Third World threats and regional conflicts. In order to achieve Global
Awareness and, if necessary. implement Dynamic Planning and Exccution. vast amounts
of information must be collected. stored, processed, and disseminated through an
interoperable Command, Control. Communications., Computing, and Intelligence (C41)
architecture.

Air Force C41 systems must effectively store. retrieve, and manage massive amounts of
digital data. Optoelectronic and massively parallel computing demands multi-terabit
memories and near real-time write and retrieval rates. Current Air Force systems range
from centralized Terabyte and Petabyte storage comprised of large objects (images) to

389

distributed heterogencous databases that contain many small and large objects (open
source databases). Although technologies for storage, processing, and transmission are
rapidly advancing to support centralized and distributed database applications, more
research is needed to handle massive databases cfficiently and achieve the Air Force goal
of “Information Dominance™.

Our goal is to retain data for potential future analysis in a cost-effective manner. The
more relevant data would remain on-line, say for five ycars. organized with the most
relevant data accessible in the least amount of time. It is expected that 2 to 5 Terabytes
of new data will be processed each day. Thus the total size of the database (both on-line
and off-line) could be as large as 20 Petabytes with about 300 Terabytes of data stored
on-line. It becomes apparent that new storage devices (primary. secondary and. even.
tertiary) for large muitimedia databases. as well as data pathways with the required
capacity, must be developed. Access time is about 5 seconds for the data less than a
week old. about 30 seconds for data under two months old. and on the order of minutes
for the data up to 10 years old.

Over the years. Rome Laboratory has nurtured a comprehensive program, developing
revolutionary new storage techniques that meet the various demands for data storage and
retrieval. Our group is currently investigating various approaches to ultra dense, highly
parallel three-dimensional optical memory storage systems. This article traces the recent
history of optical data storage and updates the status of Rome Laboratory’s rescarch
efforts in this field.

In the mid-1970s and early 1980s optical storage reached the consumer market. Industry
giants like RCA and Philips developed and marketed playback devices and large format
“laser disks” for home movie viewing. While laser disks never generated a large, broad-
stream consumer market (VCR is still the dominant technology for home movie viewing).
compact disks (CDs) are now the primary means of distributing and listening to high-
fidelity music. The introduction of laser diode devices made compact disk systems a
viable consumer product. Laser diodes operating within the near-IR (infrared) spectrum
allowed lum embossed pits to be easily detected. The new laser technology, in
combination with powerful error detecting and correcting codes. enabled SONY and
Philips to introduce the first CD audio product a decade ago.

Better optical media, more powerful laser diodes, and very precise, low-mass optics have
propelled optical disk technology to a practical, powerful system{1-3]. The next-
generation device introduced in the mid-1980s provided a flexible write-once, read-many
(WORM) capability. This enabled end-users to record and playback computer data from
the same drive. Rome Laboratory has continued to sponsor work in this area to further
exploit the benefits of new storage technology. An early Rome Laboratory prototype
used an argon laser to record and playback digital data from a 12.5-inch plastic-based
optical disk. Further inve~tment led to the delivery in 1982 of a large-capacity optical

390

jukebox for satellite imagery storage and retricval applications. The jukebox holds 100
WORM disks that provide a storage capacity of one Terabyte.

I he third generation optical disk. today's rewritable systems. offer record. playback, and
crase capability. These magneto-optical (MO) disks are composed of a rare-carth alloy
and transition materials, which often include terbium, iron, and cobalt clements. Optical
disk storage is playing a larger role in mass data storage for many military applications:
particufarly. those applications that require reliable operation under harsh operational
environments, Commercially . MO disk drives have also made an impact on the market.

Present devices store onc-dimensional (serial) information in a two-dimensional plane.
Three-dimensional memory devices store two-dimensional information (bit planes)
throughout a volume. A 3-D memory is, therefore. a single memory unit where three
indcpendent coordinates specify the location of information. 3-D memories are generally
classified as bit-plane-oriented and holographic. Bit-oriented 3-D memories, where each
bit occupies a specific location in 3-D space. differ significantly from 3-D holographic
memories. With holographic memories the information associated with stored bits is
distributed throughout the memory space. Bit-oriented 3-D memories generally use
amplitude recording media while holographic memories use phase recording media. In bit-
oriented 3-D memorics, the coordinates that specify the location of information can be
spatial. spectral. or temporal, giving rise to a variety of 3-D memory concepts that use
different materials with various properties. For example, materials that exhibit 2-photon
absorption are the basis for true volume memories, while materials wherein spectral holes
can be burned, provide a storage medium for spectral/spatial storage. In addition,
materials that exhibit the photon-echo effect could, in principle, lead to iemporal/spatial
storage.

In 3-D memory, information is partitioned in binary planes that are stacked in the third
dimension. One memory operation is performed on the entire bit plane, giving rise to a
tremendous memory bandwidth increase over conventional 2-D bit-oriented memories.

Also, by storing information in volumetric media, we can achieve very high density (1012

bits/em3). High-speed reading and writing of an entire memory plane then becomes
feasible. These considerations make 3-D memory very compatible with emerging, highly
integrated paralle! array processors and optoelectronic multiprocessors.

In this paper. we discuss the current status of our ongoing efforts in several areas of 3-D
memory. Section 2 investigates a varicty of 3-D memory storage techniques.
Holographic and two-photon storage methcds are discussed in detail. Both system and
material aspects are addressed. In addition, a less involved discussion is given for three
other techniques: Persistent Spectral Hole Burning (PSHB), recording in DNA molecules,
and the use of bacteriorhodopsin (BR) as a storage medium. Finally, in Section 3 a
summary and some conclusions are provided

391

2.0 Various three-dimensional recording techniques

2.1 Holographic data storage Holograms for artistic posters and pictures started gaining
popularity in recent years due to the maturation of technologies which produce very
pleasing images. These same technologies provide a potential to store data using
holography, with smaller system sizes but larger data capacity and faster throughput
rates[4-6]. This idea is not new to the data storage world. and dates back to the late 60’s,
but was only recently considered practical due to the emergence of improved critical
components such as improved laser diodes, Spatial Light Modulators (SLM), and Charge-
Coupled Device (CCD) detector arrays. Holographic memories also process data in
parallel, affording fast data transfer rates, high storage density, and small physical size.

A hologram is a recording of the amplitude and phase of a wavefront, which is in contrast
to photography, where only the amplitude of the wave is recorded. A hologram is created,
or written, by the interference of two beams, an object beam and a reference beam, as
shown in Fig. 1. When a hologram is read using one beam, the original wavefront
(amplitude and phase) is reconstructed, as shown in Fig. 2. To create the extremely high
data capacity, data is stored in the same physical space of the media, but is written and
read by multiplexing. Multiplexing is a way of giving each set of data a unique address.
Typical multiplexing methods used for holographic storage are angular, spatial, and phase
multiplexing.

Reference Beam

Object Beam ™ -

Figure 1. System used to record holographic data. A reference beam and object beam are
interfered within the recording medium. The resulting interference pattern is recorded
within the medium.

392

Figure 2. System used to read previously recorded holographic data. The reference beam
playback the recorded data. The data is then imaged onto a CCD.

Angular multiplexed holograms, shown in Fig. 3. change the angle of incidence of the
reference beam on the storage medium without changing the location of the arca. or spot.
being recorded. This is one method of recording several holograms, or pages of
information, on top of each other in the same location. Figure 4 shows how angular
multiplexing changes the reference beam angles but the recording location does not change.
The schematic diagram shows three collimated beams with different angles of incidence on
the storage medium. Note all three beams stay within a common location. An important
consideration for angular multiplexing systems is the need for sophisticated beam steering
devices. since without it this method can resuit in some very complex optical paths for
large storage systems.

é _— r _R_cfgr_e_n_oc_ Beam 1

Jur

¥’ I} i 1 [
{ : ;l L Refercnce Beam 2

Object Beam

Figure 3. Basic premise of angle multiplexing. Multiple holograms stored in the same
spot, all recorded with a reference beam at a different angle.

393

"‘"SI)M)

27 Beam Sicering
Desice

l.ens

Recording spot

Figure 4. A system used to perform angular multiplexing. A beam steering device is
used to modulate the angle of incidence of the reference beam.

Phase multiplexing uses reference beams with different phase fronts to vrite composite
holograms associated with the object beam. Each reference beam consists of a set of plane
waves with a unique phase distribution. This phase distribution represents the address of
the recorded information. Holographic memories using phase multiplexing have the same
data storage capacity as angle multiplexing, but involve different problems gencrating the
phase codes. We are working with Surface Optics Corporation to develop a compact 3-D
sto.age system using this method, which will store 26 Gigabytes and have a footprint of
one square foot for the entire systen.

Spatial multiplexing is a method used to change the recording spot location to a different
location in the medium. In volume holography, holograms recorded on top of each other
will ultimately reach saturation of the recording medium unless redirected to a different
spot. Spatial multiplexing can be combined with angle or phase multiplexing to increase
the storage capacity of the memory device. Holograms can be stored in one spot up to
their practical limit using angular or phase multiplexing, then the information beams are
redirected to a different spot using spatial multiplexing to fill the next area with the new
pages of information.

Optimizing the number of holograms per spot is the key to finding the best system. The
most successful efforts apply angle and spatial multiplexing. Researchers v..:h the Psaltis
Group at the California Institute of Technology have demonstrated the storage of 10,000
individual holograms ina 2 cm x 2 cm x 4 cm crystal of LiNbO;. The p’.»torefractive
LiNbO; crystal is thick. and can have a high number of holograms per spot. The
thickness determines the number of holograms that can be stored in a given area of
material before reaching the point where saturation occurs and the data resolution
decreases. The higher the density of data, the lower its resolution. However, thick
holograms require more complex optics for data addressing. Thin holograms cannot store
as much as thick holograms, but can have simpler optics. and therefore a simpler system.
We are funding two efforts with Holoplex, Inc to make data storage systems out of thin
film photopolymer disks. Each of these disks will store 2.8 Terabits, with 17 ms access

394

time, and cach disk can be recorded in 60 sec. Overall holographic storage looks more
reliable than current solid state or disk memories since the individual bits of information
are stored collectively throughout a homogeneous recording medium. Recorded
information is not susceptible to the same kind of losses magnetic or magneto-optic
devices have from dust, scratches, or other imperfections. A holographic recording
medum is generally a solid volume of homogeneous material, requiring few manufacturing
constraints to make, where semiconductor memorics require fine line lithography. Since
information is stored optically, the system is a “frec-space™ system and does not require
clements of the system to be in contact with each other to opcrate, leading to greater
speced and reliability.

2.2 Two-Photon Storage In addition to our holographic work, we arc also
investigating 3-1) memory storage which utilizes two-photon absorption[7-8]. Currently,
we are worhing with Call/Recall to develop a two-photon based optical memory. Such a
system is capable of data capacities up to 10" bits/cm®. This system takes advantage of
the parallel nature of optical recording, allowing for a page of digital data to be written (or
read) simultaneously. We have invested in this technology for the past 5 years and have
recently developed a demonstration WORM system. 1t is hoped to have a functional
read/write/crase system within the next few years. Currently. a great deal of work is
being done both in the system and material areas of this technology. The basic premise of
a two photon recording system is the simultaneous absorption of two photons whose
combined energy is equal to the energy difference between the initial and final states of
the recording material. This simultancous absorption results in a change ir the molecular
structure of the material. This structural change alters various properties of the material,
including index of refraction, the material’s absorption spectrum and the material’s
fluorescence spectrum. Therefore, by intersecting two optical beams, either spatially or
temporally, the material’s optical properties can be altered locally and addressed
anywhere within a threc-dimensional space. Digital data is written in this fashion, with
the ultimate limitation on storage capacity set by diffraction effects in the optical system.
Data readout is accomplished by proving the material with a single read beam to measure
a change in one of the material’s optical properties.

The current system architecture uses picosecond pulses of the first and second harmonic
(A = 1064 nm, A, = 532 nm) of a Nd:YAG laser. A schematic of the optical system is
shown in Fig. 5. Image storage (recording) is shown in Fig. 5{z), while image retrieval
(readout) is shown in Fig. 5(b). Digiial information is recorded in the two-photon
material as pages of digital data, the data planes separated in the axial direction.
(Currently. the material is fabricated in a cubic shape. but we are investigating other
geometries.) The input (data) arm of the system (A = 532 nm) is spatially modulated
with a SLM and imaged to the proper plane within the cube. A second. addressing beam
(A = 1064 nm),

395

Recording Sclup Keadout Setup

frequency frequency
doubler addressing beam doubler

A s tuet addressing
heam block
Nd YAG) . . 6\ removable
-3 -
readout beam meros
A - S22 nm

input beam block

NJd YAG readout beam block

vy hindncal
focusing

mput beam
A = S32
A 32 nm cviindncal

focusing
e

51 M tmaging 2 photon
Sy stem revordin mavenial A Dilrer

Figure 5. The recording (a) and readout (b) systems used for a 2-photon memory. In
(a). recording occurs where the spatially modulated input beam and cylindrically focused
addr=ssing beam overlap. The system is readout by measuring the excited fluorescence of
each recorded data planc as shown in (b).

propagating orthogonal to the input beam, is cylindrically focused throughout the cube.
A page of data is recorded when the inpt beam and addressing beam simultaneously
illuminate the image plane. The axial resolution is limited by the divergence of the
addressing beamn, while the lateral resolution is determined by diffraction effects and/or
aberrations in the input arm. A more detailed discussion of data parallelism versus
density is given later in this section.

Readout is accomplished b easuring the fluviescence of the material. The input beam
is blocked and the 532 nm bear is cylindrically focused to read the proper data page. For
the unv .iten material, the 532 nm beam is unzb_orbed and passes through the system.
However, for the written form of the material, the readout beam is absorbed, exciting a
fluorescence at a longer wavelength. The readout plane is then imaged through a
wavelength selective filter onto a CCD. Thresholding of the individual pixels of the CCD
is performed to digitize the data.

A variety of recording materials have been proposed. The proper material must posses
several key characteristics in order to be considered. Some of these characteristics ave:
photocron:isim (the change of chemical structure after excitation by light), a fluorescence
in one of the two chemical states, stability of both states at room temperature, ability to

396

read data 10" times without loss of information. high quantum efficiency of the read form
fluorescence. and a wide enough wavelength shift bet ~en the read beam and peak of the
fluorescence spectrum to prevent cross-talk. In ti .5 papei. we will discuss one of the
more promising candidates. Spirobenzopyran (SP).

Spriobenzopy ran molecules are composed of two distinct molecular components linked
by a sp’ hybridized carbon. Upon cxcitation simultaneous absorption of a 532 nm
photon and a 1064 nm photon the chemical state of the material is altered, as shown in
Figs. 6(a) and 6(b). The unwritten form. Fig. 6(a). is colorless in appearance and shows
strong absorption in the ultraviolet (A < 400 nm) portion of the spectrum. However. the
written form. Fig. 6(b). is colored in appearance and shows strong absorption in the 550
nm region. The fluorescence spectra of SP, shown in Fig 6(c). 1s peaked around 600 nm.
Note that the this peak is sufficiently separated from the read wavelength to prevent
cross-talk duning readout. Figures 6(a) and 6(b) show two species of SP. To fabricate
solid. stable recording materials, the SP is dispersed in polymers such as PMMA. This
alters the absorption and fluorescence spectrums slighily. tut does not effect the basic
system premise discussed in the previous paragraphs.

U nwntien Form MWrten brem
(X'} 10
[
»
-%‘ v
L

1RV i -
! l - %‘ l 4w

M, T

» ™o o« = L] ™ -] b] - 50 - =

i3) Wevsimghs, om vy Wamlmgh an

Fluoresenic Specteum

B I1b~ -

o -
et

uotescence Imensih

Wavelength (am)
il

Figure 6. The absorption and fluorescence spectrum for two different types of SP
compositions. In (a) the spectrum for the unwritten form is shown. while in (b) the
spectrum for the written form is shown. In (c) the fluorescence of the written form is
shown.

397

Currently, a working WORM system has been built and is used for writing and readout of
pages of digital data. The system uses a lcm’ cube of SP for a recording material. The
system has been used to record 100 planes of data with a scparation of 80 pm between
planes. The input beam is spatially modulated with the usc of chrome masks. The
mask’s resolution is 100 x 100 um’. Dynamic focusing is performed by moving the cube.
Currently no dynamic aberration correction is performed. With a demagnification in the
system of 3.4, the recorded bits are 30 x 30 x 80 um’ resulting in a density of ! Mb/cm’.
Data readout is accomplished with the use of a HeNe laser (A = 543.5 nm), and a 640 X
480 CCD array. While the system’s density is well below our desired goal of 1 Thicm’,
the system allows us to demonstrate and improve on the current technology.

Using this system initial Bit Error Rate (BER) characterization will be performed. In
order to be competitive with existing mass storage systems, raw BERs on the order of
10® must be obtained. In addition, we have begun work with the University of
Pittsburgh on an optoelectronic cache memory system which will act as cache memory
between the optical memory, and a uniprocessor or multiprocessor computing
environment. By caching a page of data during a memory read, the relatively slow access
time to the user will be significantly lowered, since the access time of the cache memory is
orders of magnitude faster than the two-photon memory.

There are several obstacles to overcome in this rapidly developing technology. The first
involves cube fabrication. Important characteristics are surface quality and material
homogeneity. Surface quality is especially important, since defects in the material’s
surface will result in scattering of the light beam and optical aberrations of the transmitted
beam. Using injection molding techniques, it is hoped to produce surfaces with RMS
roughness of approximately 0.25 um. Another significant obstacle is the current need for
high intensity beams for data recording. The probability of recording a mark (i.e. causing
a local transition of the material from the unwritten to written form) is proportional to the
product of the two beams intensities. Typically very high intensities are nceded to alter
the material (intensities uii the order of 1.6 GW/cm? are typical). In addition to designing
the materials for lower powers, we are currently investigating modifying the material’s
energy gap to allow writing at existing laser diode wavelengths. Finally, we are hoping to
design materials which can be used in a read/write/erase system. We are currently
exploring an exciting class of material which have shown repcated read/write/erase
cyclability.

A major concern with the optical system is the ability to dynamically image through
various layers of the material. As different planes are rccorded in the cube, the
magnification and amount of spherical aberration in the system changes. To dynamically
compensate for this requires very expensive high performance imaging optics. One way
to overcome this obstacle is to fabnicate the recording material in a three-dimensional disk
format. Using this 3D-CD approach. pages of images are stored as “spokes™ in the
rotating disk. The addressing beam is again cylindrically focused through the side. while

398

the recorded page of data is imaged into the proper plane of the 3D-CD. Since the disk is
constantly rotating. the conjugate planes remain in the same location and the magnification
remains constant. In addition, with the use of a properly designed compensator in the
input arm, spherical aberrations can be corrected.

A major design issue is the trade-off between data density and parallelism during the
recording operation. Due to the parallel nature in imaging spatially modulated beams,
whole arrays of data can be recorded at once. Assuming that a 1024 x 1024 SLM is used,
it is possible to simultaneously write up to 1 Mb of data. However, as larger data pages
are written, the longitudinal distance the addressing beam must remain collimated
increases. Unfortunately, since the addressing beam diverges as it propagates, parallel
recording results in the need for larger spacing between data planes, and thus, lower data
densitics. An alternative approach would be to write data in a bit-by-bit fashion allowing
the density to be limited only by the Airy spot Jiameter of the two beams. While this
drastically increases the data density, it eliminates t Harallel nature of data recording. In
Table I, three different data recording format are prese._..ed.

Addressing Beam Dimensions
Data Pixel Size | Array Size| Width Length | Thickness MVD
Format Px x Py Nx x Ny W=PxNx | L= PyNy
pm X pm jm pm pm (bits/cm3)
Bit Ix1 1x1 1 1 1x1012
Vector 5x5 256 x 1 1280 5 2 20x109
5x5 I x 256 5 1280 33 1.2x10%
Image 5x5 16x 16 80 80 8.2 4.9x10%
5x5 128 x 128 640 640 23 1.7x10%
10x 10 | 1024 x1024 10240 10240 93 0.1x10%

Table 1. The Maximum Volumetric Density (MVD) is shown for various data recording
formats.

In the bit format bits are recorded senally. In the vector scheme, a vector (a column or
row) of data is recorded in parallel, while with the image scheme two-dimensional data
arrays are recorded at once. Computations are performed assuming Gaussian beam
propagation of the addressing beam. The beam width and length are derived from the size
of the imaged data array within the cube, while the thickness corresponds to the minimum
plane-to-plane spacing of data pages which can be used. Finally, the maximum volumetric
density (MVD) correspond to the maximum data density which can be stored within the
cube. Note, that going from a bit-by-bit recording format to one in which 1024 x 1024
data arrays arc stored in parallel increases the parallelisma by 10° bits/recording step. but

399

results in a density reduction of 10° bits’em®. It is important to point out that these
calculations neglect aberrations in the input path’s imaging system which becomes worse
when larger arrays, resulting in larger field angles, are recorded.

2.3 Other Techniques In addition to our work with holographic and two-photon
memory, we also have ongoing programs in other multi-dimensional op..cal storage
systems. These approaches are all developmentally in a much carlier stage, but each
offers significant advantages in terms of capacity. throughput or material fabrication
Persistent Spectrul Holeburning (PSHB) takes a step ahead of one-bit-per-spot memories,
allowing multiple bits to be written. erased and rewritten in a single location and offering
the potential of storing up to 10'* bits’em®. The two techniques currently being explored
are frequency-domain and time-domain PSHB.

Frequency-domain Holebumir- involves burning “holes™ in a material’s absorption band
[9]. The ideal material has many narrow, individual absorption lines that blend together
into a broad absorption band. When writing information. a frequency-tunable laser would
focus on a single spot. and scan down in wavelength while sending a siream of bits. At
peak laser output (one pulse at a certain frequency), an absorbing center would make the
transition from one stable state to another, so when the same spot is spectrally scanned
there would be “holes™ at certain frequencies which would indicate the presence of stored
bits; this is one-wavelength (non-gated) holebuming. However, since non-gated
holcburning tends to be volatile. a second, fixed wavelength is used (gated holeburning) to
make the change permanent but still erasable.

Time-domain (also known as photon echo) holeburning also utilizes spectral holes for
memory storage, but relies on coherent optical transient phenomena to store data[10].
Two temporally modulated beams are set to spectrally interfere, and that inte: - .rence
pattern is stored in the form of spectral holes. This concept is spectrally analogous to
holograms, which are spatially constructed from the interference betv. .1 the reference
and modulated (object) beam. When a reference beam illuminates the spc. tor reading, the
material emits a delayed coherent output signal that resembles the temporal waveform of
the original data pulse.

There are a number of technical challenges to ove-come before PSHB becomes viable for
storage. however. One issue revolves around how to gate the material; current techniques
inflexible or irreversible. Another problem is temperature; typically, practical operating
temperatures have not exceeded 10 degrees Kelvin, making it difficult and costly to write
and maintain data. One particular Rome Lab effort is an exception, achieving room
temperature holeburning with a novel material, but even this requires considerable
development before an acceptable storage density has been attained. These obstacles
have slowcd PSHB advancement, and have yet to be resolved before any practical
applications can be produced.

400

Biological molecules would certainly be Darwin’s media of cheice for three dimensional
recording. Serendipitous natural selection has given researchers a promising material in
the protein hacteriorhodopsin (bR). This material is the light transducing protein found
in the bact.rium Halobacterium halobium. This light harvesting protein is found in the
purple membrane of the bacterium. This membrane is essential, protecting from the harsh
environment of salt marshes where the salt concentration is six times that of ordinary sca
water. Bacteriorhodopsin provides the H. Halobacterium the ability to cor.vert light
energy to a metabolically useful form when conditions do not allow for aerobic
respiration. This flexibility allows the bacterium to switch from photosynthesis to
aerobic respiration depending on the environmental conditions. The conditions of the
marsh dictate that the protein be resistant to thermal and photochemical damage. These
qualities combined with its natural cyclicity (exceeding 10%) of the protein make it an ideal
media for optical recording[11).

The photocycle of bR is shown in Fig. 7. The main photocycle consists of the left-hand
side of the figure[12]. In the course of studying this material, a branching reaction was
identificd. This is identificd by the P and Q states. The resting state of the molecule, the
bR state, can be elevated to the K state by the primary photochemical event. The other
transitions arc caused by thermal reactions and result once again in the resting state, bR.
The entire photocycle takes about 6-10 milliseconds depending on the temperature. The
interesting reaction which creates this branched photocycle happens when the last

Figure 7. The photocycle of bR.

401

intermediate state, O, is converted by light to P which subsequently decays to Q. P and
Q are the only states involved in the branched reaction and it exists as its own entity to
the original photocycle. The Q state is the one used for recording data and is created by a
sequential one-photon process. This implies that the timing of the reaction must be
precisely controlled. The matenal must be illuminated a second time while the molecules
are in the O state about 2 ms after the initial writing pulsc The room temperature
lifetime of the written state is roughly five years.

The architecture shown in Fig. 8 is used to record on th1, media. This sctup is similar to
the architecture of the two-photon approach discussed earlier, with the main difference
being that data beam and the addressing beam not only must intersect at a given data plane
in the material, but they must follow a timed sequ:nce with the paging pulse activating
the media followed by the data pulse 2 ms later changing the O state to the P state, as
shown in Fig. 9. The entirc memory can be bulk thenmally erased, or selective page
erasure is possible by illuminating with blue light (A = 413 nm). This wavelength will
convert both the P and Q states back to bR. Alternately, the entire memory can be bulk
erased with incoherent light in the 360 - 450 nm range. Some investigators have
suggested, however a WORM system as the amount of bacteriorhodopsin required for a
memory capable of storing many hundreds of megabytes is on the order of milligrams and
mass quantities of

402

DWS
. : Page
krypton-ion laser ; Selection
LCSLM
568 nm] SO
(address page) R T—— ;g\
413nm T e ‘
{erase page) . i ~ . e SIS
1 ‘ A 1
Page 3 i i
Selection } '*" ‘ g
LCSLV ! I i : i
7]
= \ - !
5 - 4‘ { i
i {
Data Cuvette ; e - L —
contaning protein Data
i polyme- matnx - Selection
: LCSLM

' firypton-ion]

laser

—'. ':
- - | l'-- | 676.5 nm
e Rt

cCD v g/ onsu DTS e Dy b'd

BET2 Selection BETt
BET3 8ST LCSLM

Figure 8. Schematic diagram of the branched-photocycle volumetric memory prototype
base on bR.

this material can be made through fermentation processes. Ultimately, this may provide
extremely cheap memory media. Individual bulk erasers could be provided for those
wishing to re-use the media.

Volumetric 3-D optical recording is a relatively new process in the data storage world, but
not nearly as new as multi-wavelength DNA storage - based on the use of enhanced

403

!

10

{
1
{
{

Laser Pulse (INS) gy

aging

o)

state

data 5L
{low

1

0

bR—K
- Slate

e

Parallel Write Sequence Parallel Read Sequence

e Time Relative to P,

Figure 9. A schematic diagram of the parallel write and read timung sequences, with time
progressing from top to bottom.

deoxyribonucleic acid (DNA) polymers as the three dimensional structure in prototype
optical volumetric memories|13]. DNA polymers provide a robust and programmable
synthetic material that can be organized into a wide variety of pre-determimed structures.
Bccause of the precise geometric and distance requirements of Forster energy transfer -
which allows for the use of a single wavelength excitation wavelength and muluple

404

wavelength emissions during the read process- energy is transferred at the molecular level,
with almost 100% quantum efficiency, similar to photosynthesis in plants. Organized
DNA chromophore structures, both natural and synthetic, produce relatively intense sub-
micron fluorescent light sources. The intensity levels in the synthetic structures are
within the range of commercially available detectors. The development of a customized
optoelectronic read/wnite system s presently a primary research objective to make a
practical DNA optical memory.

Working with Nanotro~ .., Inc, DNA polymers have been successfully attached to glass,
aluminum, and silicon, v Jetermine compatibility for use in a practical solid architecture
mn future systems. DNA chromophores exhibited energy transfer properties when
attached in the solid state comparable to their solution state, and they exhibited quenching
properties mn the solid state dramatically superior to properties n a solution state.
Experiments demonstrated the potential for multiwavelength optical storage matenal
using DNA polymers - the early efforts demonstrated a 6 color response, and using this
property, ongoing efforts show optical data storage using this organic material will allow
very high data density - on the order of 100 bits/micron (100 times the storage of present
storage densities). A conceptual DNA storage device is shown in Figure 10. As more
devices shrink 1n size, synthetic DNA will be a major player in future technologies which
require nanotechnology.

DINA storage material showing
multispectral response to single
wavelength read.

Figure 10. Visualization of a recorded spot in DNA material.

3.0 Summary and Conclusions

In summary, the technologies described here have potential in all three memory
requirements, primary, secondary, and tertiary. Three-dimensional optical memory

development can be applied to the secondary and tertiary memory requirements offering
large data capacities, medium access time, and archivability. The 3-D optical memory
concepts with terabit capacities, gigabit throughput rates, and 10-nanosecond a:cess times
are potential solutions to the prim-ry and secondary memory requirements.

With our two-photon and helographic work we have developed working demonstration
systems. and anticipate operational systems within the next few years. Unfortunately,
the prospects of a future system are still somewhat limited by key system components
such as SLM’s, fast (non-mechanical) beam deflectors, two-dimensional error correction
and detection encoders/decoders and dynamic focusing/aberration control. However,
these systems ultimately offer the advantage of extremely high data densities, and
reasonable data 1/O rates due to the parallel nature of data recording/readout. We are also
pursuing some more elaborate techniques and materials such as spectral hole burning and
DNA recording systems and bacteriorhodopsin as a recording medium. These techniques
represent technologies which may be further from maturation, but represent significant
progress in mass data storage technology.

References

1. Haritatos, Fred N., “High Periormance Optical Disk Systems,” SPIE/OSA Optical
Data Storage Conference, Feb. 1991.

2. Haritatos, Fred N., “Optical Recording,” Defense Electronics, vol. 25, no. 10, Sept.
1993.

3. Haritatos, Fred N., “High Perforimance Optical Disk Systems for Tactical
Applications,” [EEE, May 1991.

4. Burr, G., Mok, F., Psaltis, D., “Large-Scale Holographic Memory: Expsrimental
Results,” SPIE Proceedings, vol. 2026, p. 630-641, 1993.

5. Mok, F.H., “Angle-Multiplexed Storage of 5000 Holograms in Lithium Niobate,”
Optics Letters, vol. 18, no. 12, p. 915-917, June 1993.

6. Burr, F. Mok, D. Psaltis, Large-Scale Holographic Memory: Experimental Results,
SPIE Proceedings, vol. 2026, 1993, p. 630-641.

7. Esener, S., Fainman, Y., Ford, J.E., Hunter, S., “Two-Photon Three-Dimensional
Memory Hierarchy,” (Photonics for Computers, Neural Networks and Memories,
San Diego CA, 22-24 July 1992), Proceedings of the SPIE-The International Society
for Optical Engineering 1993, 1773, p. 346-355, 1993.

406

10.

11

12.

13.

. Dvornikov, A.S., and Rentzedis, P.M., “Two-Photon 3-D Optical Memory,” IEEE

Proc. of 1994 Conference on Solid State Memory Tech., p. 109-118, 1994,
Maniloff, E., Altner, S, Bernet, S., Graf, F., Renn, A., Wild, U., “Spectral Hole

Burning Holography in Optical Memory Systems,” SPIE Proceedings, vol. 2026, p.
592-603, 1993,

Babbitt, W.R. and Mossberg, T.W., “Time-Domzin Frequency-Sclective Optical Data
Storage in a Solid State Material,” Optical Communications, vol. 65, p. 185, 1988.

Horspool, W., Song, P, CRC Handbook of Organic Photochemistry and Photobiology,
CRC Press, Boca Raton, Chap. 33, 1995.

Birge, R., “Protein-Based Branched Photocycle Three-Dimensional Optical
Memories,” Rome Laboratory Final Report F30602-93-C-0135, 1996.

Heller, M., Tu, E., “DNA Optical Storage,” U.S. Patent Application, Pending.

407

NEXT
DOCUMENT

Durable High-Density Data Storage'

Bruce C. Lamartine
Roger A. Stutz
Los Alamos National Laboratory
Mail Stop B229
Los Alamos NM 87545
rstutz@lanl.gov
305-665-5615
505-665-3456 fax

Abstract

Information technology has completely changed our concept of record keeping. The
advent of dig..al records was a momentous discovery, as significant as the invention of
the pr -ting press, because it allowed huge amounts of information to be stored in a very
small space and be to examined quickly. However, digital documents are much more
vulnerablc to the passage of time than printed documents, because the media on which
they arc stored are easily affected by physicai phenomena, such as magnetic ficlds,
oxidation, material decay, and by various cnvironmental factors that may crase the
information. Even more important. digital information becomes obsolete, because, even
if future generations may be able to read it, they may not necessarily be able to interpret
it. This paper will discuss the Focus Ion Beam milling process. media life considerations,
and methods of reading the micromilled dawa.

The Focus lon Bean, (IB) micromilling process for data storage provides a ncw non-
magnetic storage method for archiving large amounts of data. The process stores data on
robust materials such as steel, silicon, and gold-coaied silicon. The storage prucess was
developed to provide a method to insure the long-tcrm storage life of data. We estimate
that the useful life of data written on silicon or gold-coated silicon to be on the order of a
few thousand years w™ “~ut the need to rewrite the data every few years. The process
uses an ion beam to carve material from the surface, much like stone cutters in ancieat
civilizations removed material from stone. The deeper the information is carved into the
media, the longer the expected life of the information.

The process can record information in three formats: 1) binary at densities of
23Ghits/square inch, 2) alphanumeric at optical or non-optical density, and 3) graphical at
optical and non-optical density. The formats can be mixed on the same media; and thus,
it is possible to record, in a human-viewable format, instructions that can be read using an
optical microscope. These instructions provide guidance on reading the remaining
higher density information. The - istructions could include informaticn about the formats

' Approved for release LAUR# 96-2205

409

of the data, how to interpret the data bit-stream, and information on the types oi readers
or methods that can be used to recover the data.

There are several methods to read the information written with the ion beam. The
selection the method is based on the density of the written Jata. Human-viewable data
written at optical dersities can be read with optical microscopes; binary data writien at
optical densities can be rcad much like currently CDs. Data wntten at non-optical
densities can be read using force/tunneling microscopes or SEM readers. In any case the
information rcad can be integrated with a computer.

Introduction

Information technology has completely changed our concept of record keeping. The
advent of digital records was a momentous discovery. as significant as the invention of
the printing press. because it allowed huge amounts of information to be stored in a very
small space and be to cxamined quickly. However, digital documents are much more
vulnerab 1o the passage of ume than printed documents, because the media on which
they are stored are casily affected by physical phenomena, such as magnetic ficlds.
oxidation, matenal decay. wnd by various environmental factors that may crasc the
information. Even more important, digital information becomes obsolete, becausc. cven if
future gencrations may be able to read it, thcy may not necessarily be able to interpret it.

For data storage over hundreds to thousands of years, there 1s reasonable concem about
effects of man-made or natural disasters. Fires and floods have destroyed many major
data bases, for example, the great library at Alexandria. burned in about 642 AD. Exacuy
who was responsible is debated. but an irreplaceable storchouse of knowledge was almost
iotally destroyed. HD ROM ({ion micromilling) technology discussed below would
survive most such ‘hisasters. The melting point of stainless steel is approximately 2500
degrees F (1370 C) and can be used as the media for data storage with this process. Most
ouilding fires burn at about 1300 degrees F (700 C). thus the probability of data survival
is quite high. It is noted that there are circumstances in which sustained fires can reach
higher temperatures. Again. choice of materials for HD ROM storage can be designed to
resist the most aggressive fires. However, simple placement of storage media in buildings
that do not contain matcrials with high temperaturc combustibility would provide
adeguate protection. Of course. tlooding is of little concern provided abrasion can be
eliminated.

Comparisons with other technologies

With these concemns in mind, one can look for methods where information has been
preserved for very long periods of ume. A primary example is paper. Paper has bcen
used for several thousands of years and has proved. on the whole, to be a reasonably
stable media for the storage of information. Paper provides a means of storing

410

1mformation in a native language format that can be understood by large numbers of
people. The printing press expanded the role and dependence on paper as a means for
storing information. Nevertheless, paper has limitations that reduce its usefulness as a
long term medium. The Europeans are now beginning to sec deterioration in SO0- 1000
year old documents produced on low acid paper. Many documents produced within the
last hundred years on common paper (high acid content) are so deteriorated that they are
even hard to micro-film.

Limitations of paper:

Fire

Mold

Environmental reactivity

Slow information scarch and read rates

Fading of inks

Media life of about 1000 years depending on storage conditions

Advantages of paper:

e Native language
e Easy to copy
¢ Does not require special equipment to read or write

The next example, from recent times. is the use of microfilm as a storage media
Microfilm provides a native language capability. U aiso provides a method of reducing
the volume required to hold the information. Copies are casy and cheap to make but siill
harder than making copies of paper documents. Microfilm is accepted in courts and
generally as a replacement for paper documents. [t is relatively hard to tamper with the
information that 1s copicd to microfilm. However, microfilm generally has the same
disadvantages as paper with the addition that it requires an enlargement device to read the
information.

Limitations of micro film:

Fire

Mold

Environmental reactivity

Slow information scarch and read rates

Loss of resolution

Requires an enlargement device to read

Requires chemicals for processing the film

Media life of about S0 - 500 years depending on storage conditions

411

Advantages of microfilm:

Reduced space requirements
Hard to modify information
Accepted by legal system
Native language

The development of magnetic storage was next in the chain that provided a means to
store ever increasing amounts of information on compact media. Magnetic storage can be
divided into two main groups - tape and disk. Both can provide high data densities in the
order of 1 Gbit per square inch. Magnetic technologies are reaching the limits for storing
information. Furthermore, large improvements in areal density are not anticipated
because of the minimum size of magnetic domains. The main advantages to magnetic
media are the ability of machines to quickly read and write information, to storc large
amount of information, to update and append information depending on formats, and to
correct some errors with built-in error correction information. However, there are a
number of disadvantages to the digital storage of documents over printed documents.
First, magnetic tape and disk media that are used to storc digital documents are easily
affected by physical phenomena, such as magnetic fields, oxidation, material decay, and
by various environmcental factors that inay erase the information. ven more important,
digital information becomes obsolete because, even if future generations may be able to
read it, they may not necessarily be able o interpret it. This is the result of requinr.g a bit
strcam interpreter to convert the information from a sequence of one and zero to numbers
and text. Another concern for the archivist is that information stored on magnetic
medium can be changed without lcaving any indications of a change.

Limitations of magnetic storage:

Fire

Local RF and EMP fields

Environmental reactivity

Overwrite capabulity (advantage in some applications)

Magnetic fade

Requirement for bit stream interpreters

Medium life of about 2-10 years depending on storage
conditions

e Not native language

Advantages of magnetic storage:
e Rapid reading and writing

e Relativity high data densities
e Error correct capabihitics

412

Optical storage systems are a recent addition to storage methods. They provide a
non-magnetic method for storing information. They can support high data
densitics and can be divided into three gencral classes. The first arc WORM
devices that are write once - read many times. The second class is rcad only. The
third class is crasable opuical disks. All device classes provide a reasonable
method to store information at relativity high data densities in -gigital formats.
There arc advances being made in this arca and densities will contirue to increase.
Some classes of optical disks are accepted in some court systems but there is no
uniform acceptance of digitally stored information. The main draw-back to these
devices is still the medium. The medium is much like a current CD-ROM and 1s
subject to many of the same limitations; for example, optical med’a will melt at
relatively low temperatures.

Limitations of optical storage:

Fire

Environmental rcactivity

Requirement for bit stream interpreters

Not native language

Media life of about 40 years depending on storage conditions
Slow data writing

Not uniformly accepted by the courts

Advantages of optical storage:

¢ Relativity high data densitics
¢ Relativity rapid reading

e Error correction capabilities
e Not affected by EMP or RF

None of the above methods have been able to match the process developed before the
time of the pharaohs for long term storage of information. In those times men chiseled
messages in stonc as a means of creating enduring records. To be sure, these glyphs have
imparted the information of their sculptors for readers millennia later. Some of the
important factors that allow the information to be understood millennia later relate to the
fact that the information is written in a native la=guage. The Rosetta stone provided the
key that allowed to translation of one native language te another. Greek and Latin writing
can still be read without the need for a “rosetta stone” because they were written in a still
active native language. The new method developed at Los Alamos National Laboratory
uses an ion beam to chisel information into durable media. In fact, the durability of the
this high-density technique is so great that one obscrver suggested that “long-term”
should be replaced by “geologic,” when describing the longevity of this data storage
mcthod. The method allows data to be written in native languages, direct human-
viewable images, and in binary formats. The information types can be mixed on the same

413

media. Thercfore, it is possible to include in a human-vicwable format, instruction on the
bit-stream interpreter required to read the binary information.

Limitations of HD-ROM:

o Highest data densities require Scanning Electron Microscope for
reading -- SEM .re large devices
o Large size of writer

Advantages of HD-ROM:

e Very high data densities 23Gbits - 11,000 Gbits per square inch, higher
densitics arc possihle

Media life of thousands of years

Not effected by EMP or RF

Not environmentally reactive depending on matenal wsed

Several reading methods are available

Native language formats are possible but not required

Can have mixed densities on the same media

Can have mixed data formats on the same media

Rapid reading and writing

Error correction capabilities

WORM device (good for archiving information)

The HD-ROM serves two main functions: (1) it stores archival data for very long periods
of time, and (2) it stores high-density data in binary, alphanumeric, and graphic formats.
Refracuve errors from thermal or mechaaical shock are unimportant to HD-ROM.
Additionally, it is resistant to reversals of magnetic ficlds that could affect the integrity of
the data. This is contrary to the performance of current magnetic storage technologies. All
present day da*» storage media rely on at least one soft, reactive, malleable, or flammabic
material for data integrity. Howcver, HD- ROM materials are nonflammable. relatively
unreactive, hard. and nonmallcable.

Writing Procedure

The high-density data storage is achieved by writing data with a micromill that employs a
single focused ion beam. Thc micromiil was built from cxisting parts, umqucly
configured. The process allows writing at the nanoscale level with deep featurcs. thus
obtaining a very high data density. Data may be recorded in any vacuum-compatible
material. lon beams can produce high-aspect-ratio (the ratio between depth and width)
features with channel widths as small as 75 atoms, or about 5 nanometers and aspect
ratios approaching 45. Although these features are extremely small, they are still well
under thermal stability limits (that is, the temperature above which atoms rearrange. a

414

process that results in data loss). Data can be written at a larger scale that would further
enhance the survival of the stored informution.

The 1on beam writing system used for the development of the process is composed of an
ultrahigh vacuum system, a load lock, a sccondary clectron detector, and a liquid mctal
ion source column. Media are loaded into the load lock chamber and then pumped o a
medium vacuum (S E-7 Torr). The media is subsequently transferred to the ultrahigh
vacuum chamber (7 E-11 Torr, or about one-ten trillionth of an atmosphere). The ion
beam then is used to image the physical location of the medium by introducing sufficicnt
secondary electrons to produce a contrast image similar to the more familiar scanning
clectron microscope (SEM). Subsequently, when operating the ion heam under higher
current density, complex milling of digital, graphical or man-readable data is carricd out
by placing the beam position and dwell time under computer control. The level of control
is similar to that available ia typical computer aided manufacturing (CAM) software. and
the operation in practice is similar to that of a waterjet mill.

The heart of the writer is the ion bean column. A liquid metal (typically gallium) is drawn
to the tip of a source under high electric field and is then ionized. Shaping and focusing of
the bhcam is accomplished with well known electrostatic (not magnetic) clements
including the apertures, condensers, stigmators, and blanking elements. The resulting

current density at the sample surface can be as high as 50 Amps.’cmz. Features such as
channcls and holes can be milled at aspect ratios approaching 45 at beam spot sives near
0.5 microns. Alternatively data can be written at higher arcal densities using smaller beam
spots and lower currents. The minimum spot size achievable in ow current system is
about 500 angstroms. Using such a beam, channels as small as 770 angstroms have been
reproducibly milled. A practical limit of milled featurcs (channel or Jdot) size for data
storage work appears to be about 5 nanometers (50 angstroms) for archival storage.
depending on the materials used.

Since writing done with an ion beam can be controlled, very much like writing 4-nc with
a dot matrix printer, multiple formats are also possible. Each character is represened by
an array of points. cach point characterized by a position and dwell time. This means that
a fcature can represent a binary value. a three-dimensional graphical image or an
alphanumen. character. Morcover, different data formats and densities can coexist on
the same physical medium.

Currently, the writing capability is limited to the speed of a single ion beam micromill.
This allows writing at 276 Gigabyte/day using the highcr current densitics. To be
effective at storing large data bases, advances must take place to allow simultancous
etching (writing) with multiple beams. This is secn as a mechanical issuc and plans for a
multi-hcad writer are progressing.

415

Reading Procedure

One of the unique features of the ion beam writing is that the data can be read in a
number of different ways. Scanning electron microscopes provide the capability to read
the highest data density while simple laser methods much like current CD-ROMs can be
used for the lower density data. The readers are designed so the highest density reader
can also read the lowest density information as well. This allows for data migration from
low density reader systems to higher densities systems without the need to rewrite the
data. Another unique feature is that the media can contain information written at human-
viewable low density that describes how the higher density information can be read. The
low density information could also contain instructions about any bit-stream interpreters
required to make use of the higher density data. This would provide a means to insurc
that data written today could be read several thousand years from now even with new
reader systems and even if the formatting and engineering information related to the
media was lost.

There are three basic types of information that the readers must be able to read. The first
is binary that is used for the storage of many styles of information such as numeric
information, text, and bit map images. The second is one level image and text
information in human readable form. The third is multi-level such as gray scale images
and 3-D shapes.

Optical Systems

Optical systems fall into two general classes and three basic types of readers. The [irst
class is for low density optical scale information much like current CD-ROMs. This
density is a little better than current CD-ROMs and read rates of about 12x. The high
density optical reader is designed to push the limits of optical rcading efficiency. This
density is much greater than current optical systems and rcad ratcs approaching 500
Mbytes per second are estimated.

Sub-optical

The sub-optical readers also fall into 13 two main classcs. The first is a reading system
designed to read sub-optical feawres without the use of a scanning clectron microscope.
These readers operate at much higher densities than the high density optical rcaders
discussed above and have read rates in the order of 2 Gbytes per second. The high
density sub-optical reader is a modified scanning electron microscope that can rcad
features as small as 3 nm. The rcad rate for the scanning electron microscope 1s 1n the
order of 2 to 20 Gbytes per second.

416

Other reading methods

In addition to the above method, data can be read with atomic force microscopes and
STM. At present these methods are slower and more costly.

Applications

Jeff Rothenberg, in the January 1995 Scientific American| 1], addressed the advantages of
digital media for document storage and the need for a long-term solution for preservation
of select records. HD-ROM offers such a solution. Of course, some argue there is little
data worth storing for such a long period. Others suggest they would prefer a read-write
system so that files can easily be updated. These arguments are valid. However, there are
a substantial number of files for which read-only, (or read maybe) are approp:iate. One
example is need for “data assurance” where data must be safe from modifications. As
another example, several institutions have an intense interest in maintaining genealogical
data. The largest genealogical repository estimates their storage requirements at 12

pentabytes (1015) of digital data. They also have an interest in the storage of genealogical
data in a human-viewable form with greater longevity than micro-film. Since the actual
storage cost is so low, an estimated $20.00 per terabyte for media materials, and the
storage space so small, it would make sense for many industries and governmental
agencics to take advantage of the technology.

As Rothenberg points out, magnetic media, the current choice for digital data storage, are
vulnerable to "the ravages of time" through both material degradation and exposure to
electromagnetic pulses(EMP). On the other hand, HD ROM is virtually impervious to
EMP, and the degree of physical degradation can be controlled by choice of materials. For
most circumstances, stainless steel should offer sufficient protection to ensure longevity.
The major concern in long-term storage would be 10 cnsure the potential for abrasion was
minimized. Given the possibility for atmospheric contamination through increases in
acidic content, materials should be protected nominally through prudent encapsulation.
No extreme environmental measures such as cryogenic or high vacuum containers would
be required.

Numerous recent articles have extolled the virtues of advances in magnetic data storage.
Simonds, in Physics Today(2], April 1995, suggested recordings are the most significant
market for magnetic technology. He states the business sector has mass storage
requirements that amount to petabytes of digital data. In predicting advances in magnetic

storage density, Simonds states, "10 Gbits/in? would be reached by the year 2005." He
further predicts commercial densities of 5 gigabytes/in2 and § terabytes/in3 by 2003.

These predictions pale when considered against demonstrated current HD-ROM

technology. Extant capability for data storage is 23 Gbits/in?. Writing done on

417

high-strength, 10 micron steel tape would produce storage greater than 50 terabylcs/in3
even allowing an air space packing factor. If 3 micron tape was used for data storage, then

densities in excess of 190 tcrabytes/in3 are possible. It is belicved 3 micron, or thinner,
tapc would be strong cnough for commercial applications. All of these figures arc based
on current capability. Further, the HD-ROM process does not currently entail any data
compression. Many of the present and projected magnetic recording techniques employ
data compression to achieve their storage densities. Should HD-ROM employ data
compression techniques. then even higher densities than thosc described are possible.

A recent article by Terry Cook in Technology Review|3] discusses the nced for better
methods of storing information in the computer age. The paper also discusses some
common problems associated with storage that do not exist to the human eye.

There are many applications for HD-ROM. Movies offer a substantive example. We are
already aware of the substantial number of films that have been lost due to disintegration
of materials. An industry is cmerging to reconstitute film classics. but this is a time and
labor intensive process. While nothing can be done short of this restoration process for
degraded films, something can bc done to ensure that new films can have long life
expectancies. With an estimated 250 Gigabyte/film data rcquirement for threc color
scparation, each major studio could permanently record a film in less than two days using
the multi-head writer.

The National Archives would also be a candidate user. There are many national records.
including the Congressional Record, that should be stored for a long duration. Financial
institutions would find long-term storage of incorruptible data a major advantage. Then,
events such as the stock market information warfare attack depicted in Tom Clancy's
recent book, Debr of Honor, would have minimum impact. It is the inability to change
these records, making retroactive adjustments impossible, that would be of importance to
that industry. In fact any business that values a sound data base would appreciate HD-
ROM.

This also applies to the scientific community. Large, permanent data bases would be
invaluable to researchers doing longitudinal studies. One example, would be NASA's
Earth Observation System (EOS) data that is estimated will be collected at a rate of one
Terabyte per day. NASA would like to keep the data for 90,000 ycars. Cross references to
such data bases would assure the accuracy of base line data. Deep space probes too could
benefit from HD-ROM. Detailed instructions could be etched on very small surfaces.
These etchings would be impervious tr the extremely harsh environments and unknown
electromagnetic fields that might be encountered.

418

References

{1} Jeff Rothenberg, Ensuring the Longevity of Digital Documents, Scientific
American, vol. 272 number 1, p 42-47,1995

{2] John L Simonds, Magnetoelectronics Today and Tomorrow, Physics Todav, vol. 48
number 4, p 26-40,1995

[3) Terry Cook, It's 10 o'clock: Do you know where your data are?, Technology Review.
vol. 98 number 1, pages 48-53

419

NEXT
DOCUMENT

A Note on Interfacing Object Warehouses and Mass Storage Systems
for Data Mining Applications*

Robert L. Grossman

Magnif-, Inc. University of Illinois at Chicago
815 Garfield Street Laboratory for Advanced Computing
Oak Park, IL 60304 851 South Morgan Street
Email: rig@opr.com Chicago, IL 60607
Tel: 708-383-7002 Email: gri:oman@uic.edu
Fax: 708-383-7084 Tel: 312-413-2176

Fax: 312-996-1491

Dave Northcutt
Magnily, Inc.
815 Garfield Street
Oak Park, IL 60304
Tel: 708-383-7002
Fax: 708-383-7084

Abstract

Data mining i. the automatic discovery of patterns, associations, and anomalies in data
sets. Data mining requires numerically and statistically intensive querics. Our
assumption is that data mining requircs a specialized data management infrastructure to
support the aforementioned intensive queries, but because of the sizes of the data
involved, this infrastructure is laycred ov~r a hicrarchical storage system. In this paper.
wc discuss the architecture of a system which is layered for modularity, but exploits
specialized lightweight services to maintain efficiency. Rather than use a full functioned
database for example, we use light weight object services specialized for data mining. We
propose using information repositonies between layers so that components on either side
of the layer can access information in the repositories to assist in making decisions abow
data layout, the caching and migration of data, the scheduling of queries, and related
maltters.

Introduction

Data mining is the automatic discovery of patterns, associations, and anomalics n duta
scts. The data mining of large data sets is a special challenge because the process
requircs numerically and statistically intensive queries on large amounts of data. Our
assumption is that data mining requires a specialized data management infrastructure, but
because of the sizes of the data involved, this infrastructure is layered over a hicrarchical
storage system. Our concern in this paper is an appropriatc open, layered architecture to
support this.

* This work was supported in part by the Massive Digital Data Systems Program.

421

A common layered architecture for this type of system is illustrated in Figure 1. Theie
are three layers: the storage management layer, the data management layer, and the data
mining and analysis layer. Unless these three layers comdinate how the data is physically
l2id out, how it is cached arnd migrited, and how it is prefetched, these layers can work at
cross purposes and drastically impair the performance of the overall system.

The traditional approach forgoes th: convenience and modularity of a layered approach
for efficiency: with this approach, the data management system manages storage itsclf.
while the data mining and data analysis applications manage the data themselves. In
practice, this has meant that gencrally data mining applications simply work with flat data
that fits into main memory. Of course, this data may be obtained by samgling large
databases, but the point is that the data mining applications rhemselves work with small
amounts of relatively simple data. This may be thought of as a sample-based approach to
data mining.

In this paper, we arc concerned with an alternative approach: the system is layered for
modularity, but exploits specialized lightweight services to maintain efficiency. Rather
than use a full functioned database for example, we use light weight object services
specialized for data mining. With this approach, the data mining applications can work
with large amounts of complex data. Another advantage of this approach is that the data
management services can be uscd to manage the internal data structures required by the
data mining algorithms. This may be thought of as a data-driven approach to data
mining.

One of our specific concerns in this :.ote is how the different layers can share
information, especially 1n a heterogeneous environment. We propose using infcrmation
repositories between layers so that components on either side of the layer can access
information in the repositorics to assist in making dccisions abdout data layout, the
caching and migration of data, the scheduling of queries, and reiaicd mutters.

This proposal generalizes and cxtends the proposal in Brown et. al. {1] for providing a
repository between a mass storage system and a relational databasc management system
and is a refinement of the architecture described in Grossman [2] and [2] for = scaieable
data mining system.

This work is preliminary. A fuller treatment is in preparation.

422

Web based
access (o data

Data yd i 7
pa i pd
i 7
' Data Mining Data Analysis | Visualization //
Data Management Layer //
Storage Management Layer /)
Nodes &
Services

Figure 1. In a layered approach to data mining, rather than manage their own data, data mining
apphcations use services from a data management layer. which n turn use storage services
fron a lowcr layer.

Background and Related Work

Broadly speaking, there arc two relevant traditions: one systcm-based and onc service-
based. In the first. the essential question is how a database management system can
interface to a storage management system. In the sccond, the essential question is what
services arc required so that data management. storuge management, and application
services can intcroperate in an open nctwork environment.

Relational database-mass storage system interfaces

Historically, databases have managed the storage of single disks; more recently, they
have managed the storage of distributed disks. For some applications though much of the
data is distributed on a storage hierarchy, including tape and other tervary storage, which
is m' naged by a mass sterage system. One of the most important interfaces effecting
performance is the interface between a relational databasc client and the mass storage
system. A group at Lawrence Livermore National Laboratory has proposed an interface
between a client of a relational database management svstem and a mass storage system
Brown et. al. [1]). This interface which they call an information Data Repository (IDR)
would serve as the home fu- several relational tables, including: one for relational tables
from the client database (called the bundle table), one for instances of thc varnous
components in the storage hierarchy (called the store table), one for mapping regular sub-
components of bundles to stores (called the block table), and one for a list of pending
requests for moving data between stores (called the movement table). In addition. the
proposal [1] snggests using a standard relational database management systen: to manage
the various tables in the IDR. The IDR would be extenal to both the databasc and the
storage system and all interactions between the database and the mass storage system
would be required to go through the IDR.

423

Light Weight Object Management Using Network Services

Another approach is to develop a data management system specifically designed for the
mining and analysis of data. This type of system docs not require the full functionality of
a database, but instead is optimized to provide low overhead, high performance access o
data which is read often, occasionally appended, but infrequently updated. In addition,
data may be pre-computed and specialized indices may be provided. This can be thought
of as providing specialized lightweight application specific data management scrvices
Grossman et. al. [4]; or alternatively, as providing an object warehouse specialized for
data mining applications Grossman [3].

As usual with databases. with this approach there is a manager for physical collections of
objects (called segments). In addition, to achieve scalability, physical collections of
segments are themselves gathered into larger physical units called folios. There is also a
folio manager which interacts with file and storage scrvices, including mass storage
systems. Just as the segment manager can query the folio manager. so can the mass
storage system. The folic manager maintains a table of folios and their physical
locations. In some sense, the folio manager can be viewed as the interface between a
database and a (hierarchical) storage system. See [3] and |4] for more information about
this approach.

Distributed Object Services

The Object Management Group’s Common Object Request Broker Architecture
(CORBA) is an industry standard for the development of distributed object-oriented
applications across heterogencous platforms. The OASIS cenvironment developed at
UCLA by Mesrobian et. al. [S] is an open environment for working with scientific
information based upon CORBA. CORBA is optimized for workiag with rclatively
large-grained objects in heterogencous environments in contrast to the usc of lightweight
data management and data warchousing described above. In some sense. CORBA is
pc: .mistic about the physical layout of data and provides the infrastructure to support
this in order to work in heterogencous environments, while a lightweight approach .s
optimistic and only translates the physical format of data when nccessary.

Requirements and Objectives
Our over all objective was o design an open system for data mining and data analysis
which scales as the amount of data and the numerical complexity of the query increases.
More specifically, we had the following requirements:

e Large data sets. Our most important goal was to support the mining and

analysis of very large data sets, including data sets large cnough to require
muluple disks or tertiary storage.

424

® Numerically intensive queries. Our second most important goal was to provide
very low overhead, high performance access to the data. In some sense
databases are optimized to prov-é~ safe access to data which is expected to
change: our goal was to prov. high performance access to data which is
relatively statc.

o Transparent access 1o data. Because of the size of the data sets, much of the
data is expected to be either on tertiary storage or on large arrays of disks. An
important goal was to providc transparcnt access to the data, independent of
1ts location or media type.

Architectural Description

Our architectural framework consists of a storage management layer., a data management
layer, and an application layer consisting of clients of the data management services. We
are primarily concerned with data mining and data analysis clients. Between each of the
layers is a repository for information: a Storage Interface Repository (SIR) between the
storage management and data management layers and a Data Interface Repository (DIR)
betwecn the data mining applications and the data management layer.

Data Interface Repository (DIR)

Traditionally, data mining has looked for patterns in small amounts of tlat file-hascd data
or sampled small amounts of data from relational databases using SQL queries. Data-
driven data mining requires working with large amounts of complex data, much of which
has to be warehoused becausc of performance considerations. The DIR has several roles.
including:

s The data required for data mining and data analysis querics may be distributed
in several data management systems, including data warchouscs and
operational and archival data managcment systems. The DIR provides a
uniform interface for data mining and data analysis queries. The DIR
maintains a list of logical data sets and the systems which are maintaining
them.

e For performance reasons, some of the data for data mining applications may
be warchoused, and specialized index and access structutcs may be provided.
This requires periodically refreshing the data from the operational and archival
databases. The DIR maintains the information required for this to take place.

e The DIR can also maintain the information for the optimization of data mining
querics using information obtained from the results of previous queries.

425

Storage Interface Repository (SIR)

Data management systems by necessity divide the data they manage into regular sized
extents. For example, access to file-based data is through blocks of equal length, while a
common type of object-oriented database provides access to objects through extents of
equal length called segments. These extents can ther bhe managed by the data
management systems themselves or by file or storage systems. In particular, they may be
managed by hierarchical storage systems. The SIR has several roles, including:

o The demands upon extents imposed by the database management system arc

not necessarily those imposed by the hierarchical storage system. Not all
extents are treated the same by the data management system: for example,
some may contain directory or index information, which it would prefer
remain pinned to secondary storage, even if infrequendy accessed. The SIR
provides a mechanism for a database and a hierarchical storage system to
exchange information about desired movements of extents or sequences of
extents.

A database must be able to estimate the time to access data. If the physical
management of the data is delegated to the hierarchical storage system, then
the SIR must contain enough information so that the database can still make
these estimates.

To work with very large data sets, a hierarchy of extents, as described above,
must be supported by the SIR. For example, for terabyte size data seis, there
are simply too many segments to be managed directly by the database.
Instead, it is important to group objects into scgments, and segments into
larger units.

The SIR discussed here is an extension of the IDR proposed in Brown et. al. [1].

426

Data Mining Data Analysis Visualization

Data Interface
DIR Repository (DIR)
Object Object-Relational | Relational
Warehouse Data Management | Data Management
System System
SI Storage Interface
R Repaository (SIR)
Hierarchical File System Wide Area
Storage System File System

Figure 2. The role of the Data Interface Repository (DIR) and the Storage Interface Repository (SIR) 1s w0
maintain information so that services and applications in different layers can interoperate.

Discussion
In this section, we discuss some issues regarding the architecture.

o s the interface mandatory or advisory? Systems can be built either way. If
the interface is mandatory, then performance may suffer, since some of a
component’s essential services may have to be accessed externally. On the
other hand, if the service is advisory, inefficiencies are likely and deadlocks
are possible because differemt components accessing the service may make
conflicting choices.

o Is the interface part of one of the components or independent? Traditionally,
for example, the management of table information, block information, and the
mapping from tables to blocks has been a component of the data management
system. The role of the SIR is to provide this information through a separare
service. Alternatively, the SIR could be incorporated into one of the layers
and accessed from the cther layer.

427

® How should the DIR and SIR be implemented? A varicty of implementations
arc possible: The DIR and SIR could simply be implemented as a network
service. Alternatively, a relational database can be used as proposed in Brown
et. al. []. or a CORBA Object Request Broker (ORB) could be used.

o What is the granularity of access? For this approach to succeed. it is
important to be able to adjust the granulanty of the objects referenced in the
SIR and DIR so that performance is not adversely eftected.

Status

This approach arose out of work with a system for data mining developed by Magnity.
Inc. called PATTERN. PATTERN currently consists of beta versions of an object
warchousc [3] and data mining modules for classification. prediction. and optimization
Grossman et. al. [6]. A decmonstration of the system mining and analyzing high cnergy
physics data took place at Supcrcomputing 95. A performance evaluation of the sysiem
is currently being preparcd and will appear elsewhere.

Currently, the SIR is part of the object warchouse and interfaces to the High rerformance
Storage System (HPPS) Teaff [7], while the functionality proposed by the DIR is
currently shared between the different data mining modules.

Summary

In this paper. we propose a laycred approach to a data mining system. Data mining
applications exploit specialized data management services from a lower level, which in
turn exploit specialized storage management services. We propose providing information
repositories between each level so that services on cither side can efficiently exchange
information. To maintain performance, we use specialized lightweight data management
services instead of a full functioned database, and adjust the granularity of the data passed
between the layers to lower the cost of accessing the information repositories.

References

{1] P. Brown, D. Fisher. S. Louis, J. R. McGraw, R. Musick and R. Troy, “The Design of
a DBMS/MSS Interface,” Lawrence Livermore National Laboratory Technical Report,
1995.

[2] R. L. Grosman, H. Hulen, X. Qin, T. Tyler, W. Xu, “An Architecture for a Scalable.
High Performance Digital Library,” Proceedings of the 14" IEEE Computer Socicty Mass
Storage Systems Symposium, S. Coleman, editor, IEEE, Los Alamites, CA, 1995, pages
89-98.

{3] R. L. Grossman, "Early Experience with a System for Mining, Es ‘mating, and
Optimizing Large Collections of Objects Managed Using an Object Warehouse ,"

428

Proceedings of the Workshop on Research Issucs on Data Mining and Knowledge
Discovery, Montreal, Canada, Junc 2, 1996.

4] R. L. Grossman, S. Bailey, and D. Hanley, “Data Mining Using Light Weight Object
Management in Clustered Computing Environments,” Proceedings of the Seventh
Intcrmational Workshop on Persistent Object Systems, Morgan-Kauffmann, 1996.

[S} E. Mesrobian, R. Muntz, E. Shek, S. Nittel, M. LaRouche. and M. Krieger, “OASIS:
An Open Architecture Scientific Information System,” 6 International Workshop on
Rescarch Issues in Data Engincering, New Orleans, La. February. 1996.

[6] R. L. Grossman and H. V. Poor, "Optimization Driven Data Mining and Credit
Scoring, Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence
for Financial Engincering (CIFEr), IEEE, Piscataway. 1996, pages 104-110.

{71 D. Teaff, R. W. Watson, and R. A. Coyne, “The Architecture of the High Performance

Storage System (HPSS),” Proceedings of the Goddard Conference on Mass Storage and
Technologies, College Park, MD, March, 1995.

429

NEXT
DOCUMENT

Towards the Interoperability of Web, Database, and Mass Storage
Technologies for Petabyte Archives

Reagan Moore, Richard Marciano, Michael Wan,
Tom Sherwin, Richard Frost
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784
E-mail: {moore, marciano, mwan, sherwint, frost}@sdsc.edu
Phone: 619-534-5073
Fax: 619-534-5152

Abstract

At the San Diego Supercomputer Center, a Massive Data Analysis System (MDAS) is
being developed to support data-intensive applications that manipulate terabyte-sized data
sets. The objective is to support scientific application access to data whether it is located
at a Web site, stored as an object in a database, and/or stored in an archival storage
system. We are developing a suite of demonstration programs which illustrate how Web,
database (DBMS), and archival storage (Mass Storage) technologies can be integrated.
An Application Presentation Interface is being designed that integrates data access to a.l
of these sources.

We have developed a data movement interface between the Illustra object-relational
database and the NSL UniTree archival storage system running in production mode at the
San Diego Supercomputer Center. With this interface, an Illustra client can transparently
access daia on UaiTree under the control of the lllustra DBMS server. The current
implementation is based on the creation of a new DBMS storage manager class, and a set
of library functions that ailow the manipulation and migration of data stored as Illustra
"large objects".

We have extended thi interface to allow a Web client application to control data
movernent between its lucal disk, the Web server, the DBMS Illustra server, and the
UniTree Mass Storage environment. This paper describes some of the current approaches
for Web, DBMS, and Mass Storage interoperability, and presents a framework for
successfully integrating these technologies. This framework ic measured against a
representative sample of environmental data extracted from the San Diego Bay
Environmental Data Repository. Practical lessons are drawn and critical research areas
are highlighted.

1. Intreduction

A series of projects are being undertaken at the San Diego Supercomputer Center to
develop the software technology that is needed to support data-intensive scientific

431

applications (Moore [1]). These projects explore various aspects of distributed data
handling capabilities, including integration of object-relational database management
systems (ORDBMS) (Moore [2]) with archival storage. development of Web and Java
interfaces for databases and archival storage systems, and development of a stand=+4 API
for accessing data from heterogeneous sources.

The ability to manipulate very large data sets and large collections of data sets is a Chief
goal of the Massive Data Analysis System (MDAS) project (Moore [3]). Two features
are essential components of this system: accessing data sets by attribute rather than UNIX
file name. and transporting very large data sets across parallel [/O channels. Object-
relational dtabase technology is used to support query by attribute, and archival storage
technology is used to support third-party parallel transfer of data sets. The MDAS project
is integrating these technologies to create a data handling environment capable of
supporting terabyte-sized data sets. Large objecis that are controlled by the databasc arc
stored in the archive instead of the database local disk. This allows the ORDBMS 1o
manage collections of data objects which exceed the local database disk capacity. By
using transportable methods for manipulating data objects. it is also possible to minimise
CPU execution constraints. When a query is processed, both the data object and the
transportable method are sent to a system on which the analysis is then done. The data
handling system effectively serves as a data scheduler, moving data and associated
computational methods to available compute resources.

The data-handling system architecture is presented in Figure 1. Three different clients are
shown accessing the system, corresponding to interactive Web-based access. scientific
application access, and DBMS access to support data movement between multiple data
handling systems. The DBMS maintains large objects within the archive and has the
ability to schedule computationally intensive work on various production systems. The
system is designed to support third-party transfer of data from the archive dircctly to the
requesting system across parallel 1/0 channels.

To gain insight into issues associated with database/mass-storage integration, we built a
prototype using lllustra (Illustra [4]) as the database engine and NSL UniTree as the mass
storage system. NSL UniTree is a hierarchical archival storage system currently running
in production mode at SDSC. The hardware platform consists of a single IBM RS/6000
99) workstation, a disk cache of 100 GB, two StorageTek tape silos and 8 tape drives
transferring data at rates up to 2.9 MB/s with 1 controller per four drives. The system is
capable of storing up to 20 TB (terabytes) of data. The most recently accessed files arc
staged on the large disk cache and the rest are migrated to tape.

A second research prototype has been created through a similar integration of Postgres9S
Stonebraker [5, 6]) with NSL UniTree. The database runs on a 17-node IBM SP-2, which
controls a 500-GB IBM Serial Storage Architecture (SSA) Disk Subsystem and a 60-TB
IBM 3494 Tape Library Dataserver using six high-capacity 3590 Magstar tape drives.
This system will be used in collaboration with IBM to develop a Massive Analysis
Testbed that integrates the DB2 Parallel Edition DBMS with the High Performance

432

Storage System (HPSS) mass storage system (Archival Storage Research at SDSC [7)).
Data transfer rates of 300 MB/sec are expected from this system. The nominal design
point for expansion of this testbed is to sustain at least 1 GB/sec data access rate for cach
additional terabyte of disk. The design point for data access to tape is I GB/sec per 100
terabytes storage capacity.

Production Systems
OO I & 5
IO CIU U -
.'...' -. -. . ..;5-3-&--1.-;-00
.C.C.l.l.l. ouéu?uénsngnn
SMP/VP Cluster MPP Print/Visual Media
I Hierarchicol Storage Systems
Web Client Web Sarver) -
DBMS :
Interactive
Application Client Network Sefver
Interactive Systems
\ “tanet aEig
.« o= LR A
RIS 12128
" Intetactive +

Figure 1: MDAS System Architecture

This paper presents the various software interfaces that have been developed in the
research prototypes. The mass storage interface is described in section 2, the database
interface in section 3, and a Web interface in section 4. A real-world example consisting
of a representative sample of environmental data extracted from the San Diego Bay
Environmental Data Repository is shown in section 5, and concluding remarks and
expanded data access scenarios are given in section 6.

2. Mass Storage interface (MSI)
We bave developed a data movement interface between the Illustra object-relational
database and the NSL UniTree archival storage system. With this interface, an Illustra

433

client is able to transparently access data on UniTree through the Illustra server by
sending appropriate queries and commands.

2.1 MSI software features

Metadata describing the data set aitributes are stored on the local disk under the database
control. Large objects (data items larger than approximately 8K bytes) are stored in
UniTree through the Illustra/UniTree interface. A large object is a defined data type that
is crea*~d using the llus‘ra DBMS facilities. Large objects stored in UniTree have all the
database properties of any Illustra object, such as transactior: rollback, crash recovery,
and multi-user protection. Unreferenced large objects can be removed from the database
by issuing the "vacuum” SQL statement. However, once created they cannot be
overwritten or appended to. lllustra supports a built-in data type for pointing to a large
object, called “large object”. When a user selects a large object from a table, the
returned value is a handle to the /arge object. The handle is a character string, such as
'1098723987211", which is used to define a unique data set within the UniTree system or
the local database disk.

From an Illustra client standpoint, except for the difference in access speed between local
disk and remote archive, "large objects” stored in UniTree behave exactly the same as
other "large objects”. A user can use nomnaal queries and commands to perforin the
following tasks:

» Store and retrieve large objects between local disk and UniTree.

» Vacium unreferenced large objects stored in UniTree.

" omn

o "Dump", "restore” and "recover” "large objects" stored in UniTree.

To test the integration, "large object” files stored in UniTree were intentionally deleted
after a "dump". "Restore"” and "Recover" were then used to restore the deleted files.

2.2 MSI software implementation

The implementation of the MSI is done by adding a storage type - "UniTree" to the
ORDBMS storage manager. This required creating a set of 35 new UniTree specific
access functions for operating on data sets. Example functions are open, close, read,
write, flush, abort, and synch. The design provides a one-to-one counterpart for each
UniTree access function with the corresponding function for accessing magnetic disk
storage.

434

Similar to the magnetic disk storage type functions, the UniTree access functions do not
make direct 1/O calls. Instead they perform I/O through Virtual File Descriptor functions
that call the libns!.a and libnsltree.a UniTree libraries to interact with the UniTree Mass
Storage System. These libraries provide client processes with UNIX-like 1/O access
functions as well as functions that are specific to UniTree such as file staging and
migration.

3. Database software interface

User functions have been developed to allow user-level control over the storage I ~*ion
of the data sets within the integrated database/archival storage system. Note that the data
sets might initially be stored on the user’s local disk, then stored as a large object on the
database system disks, or stored in the archival storage system. The responsiveness of the
system typically improves, the closer the cache level is to the user. Hence user control is
needed to optimize access performance.

Three DataBlade functions - myFileToL.O(), LocalToUtree() a1 i UtreeToLocal() have
been created to provide an easier way for an Illustra user to convert local files to large
objects on UniTree and to migrate objects between UniTree and database file systems. A
DataBlade i a mechanism to extend the Illustra server to manage new data types and
functions on these data types.

The DataBlade terminology comes from the following analogy: just like a general
purpose utility knif~ can be ertended to perform different cutting jobs by inserting
special-purpose blades, so can the illustra L. :ver be extended tc manage new data types
by snapping in the required ZataBlade. Basically, these functions use the large_object
manipulation functions of lllustra to mo'7e large objects between database magnetic disk
and UniTree.

3.1 Data caching functions

1) myFileToLO (filename, flags, smgr) - used to copy a local disk . « to a large object
stored in the archival storage system. This is the same as the FileToLO () function that
comes with Illustra with the exception that a parameter - smgr has been added to allc &
users to specify the storage type for the large object.

Filename = The name of the file to be converted to large object.

Flags = the location of the file :
0 = the file is on the client machine.
1 = the file is on the server machine.

Smgr = the storage type where you want to store the large object.

0 = local disk.
2 = UniTree.

435

The returned value is the LO handle of the newly created object.

2) UtreeToLocal(large_object) - used to migrate large objects from archival storage to
the database disk.
Large _object = The LO handle of the large object to be migrated.

The returned value is the LO handle of the newly created large object.

3) LocalToUtree(large_object) - It is used to migrate large objects from the database
disk to archival storage.
Large object - the LO handle of the large object to be migrated.

l e veturned value is the LO handle of the newly created large object.

3.2 Examples

The following script illustrates the use of these three DataBlade functions. One could
interactively enter this script using the msq/ command shell. The text bold corresponds
to the system's response. The large object handle value encodes the cache location of the
data set (I12... means that the large object actually resides in the UniTree archival storage
system. and I0... ineans that it is on the Illustra Server disk). Two data sets are stored in
the system; "fool” on UniTree and "foo2” on database disk. "fool” is then migrated
onto database disk. and "foo2" is migrated into UniTree.

---- First, create a table named LOTest.
create table LOTest

{

name text,

myLO large object
)

---- The following command will store the large object in Unitree
i1nsert into LOTest values ('fool’,

myFileToLO ('filel', 0, 2));
one row inserted

---- The following command will store the large cbject to local
---- disks.
ingsert into LOTest values ('fco2',
myFileToLO ('file2', 0, 0));
one row inserted

select * from LOTest;

436

| fool 112105826192499]
| fo02 {10108798611396 |

.............................

---- The next 2 commands migrate the large objects between the
---- local disk and UniTree.

update LOTest set myLO=UtreeToLocal (myLO) where name='fool';
update LOTest set myLO=LocalToUtree (myLO} where name='foo2';

select * from LOTest;

|name | myLO |
lfool |10109780388205|
| foo2 [12100786116526[

P I)

---- Illustra does not delete the old object automatically, so
---- you need to vacuum it.
vacuum from LOTest;

4. Web software interface

A Web Server side C-language CGl (Common Gateway Interface) to Illustra was
developed. This program allows the user to build or specify existing SQL queries which
are then passed to the Illustra server. In essence the C interface program is a multi-
purpose program acting as a Web Clieni program (generating HTML) and also as an
Illustra DBMS client program (connecting remotely to the Ilustra Server, issuing SQI.
commands, collecting SQL command result sets, disconnecting from lHlustra, extracting
information from the result sets and displaying it to the screen). The DBMS client part is
done by linking the code to the /ibmi.a lllustra C-programming interface library.

Other than the fact that the SQL commands which are sent to the server allow the use of
the new UniTree DataBlade functions, the Web software interface is a standard interface
that one would find in most Web to DBMS integrations.

This section illustrates how one might be able to control this integrated environment on a
simple web example (section 4.1) and concludes with general considerations on how we
dealt with server time-out issues (section 4.2) .

4.1 An integrated example

The WFB demo presented here can be executed from the following Web page:

http://www.sdsc.edu/projects/MassDataAnal/Demo_lllustra+Unitree/

437

The following explanations arc meant to serve as an introductory guide 1o this web demo

Figure 2: Data Movement Integration demonstration screen

1he demo presents the equivalent of a finite state machine. The three states are: Client
DBMS. and Mass Storage. The demo illustrates data movement between a Chient (Web
client, for example). a DBMS and a Mass Siorage environment. Tokens representing data
objects are allowed to flow along the connecting arcs and are associated with state boxes
There are two kinds of data okens: Metadata and Darasets. A Daraset token s a file in
this demo and can appear in any of the three states. A Metadata token can only appear in
the DBMS state and represents the existence of a non-empty Hlustra table. The actaal
table contains two fields mciuding a large object icld which is a handle o a large vhioct
stored either in the DBMS state or 1 the Mass Storage state.

The miual state of the syvstem indicates that a file resides on the client side. Contevt-
sensttive action buttons allow yvou to choose the data flow paths of interest. For example.
initially . one could load the file mto the DBMS and have the file's final destination be on
the DBMS machine ("Copy o DBMS” ACTION button) or one could foad the file into
the DBMS but have s final location be on the Mass Storage file ("Copy 1o Muss
Storage” ACTION button, as m Figure 2.3 In either case a Metadata token would appear
on the DBMS state box. indicating the existence of a non-empty SOQL table,

Allowed actions include "Copy " "Delete”. and "Restart”. Explanations of what was just
carried out appear on the botiom of the diagram as well as detatled imstructions of what
the Hlustra Metadata table's content is and how this operation was carried out. oeatures
icluding a “harge object display” section are provided. This allows svou 1o display the
contents of the file abject directly from its current location (Chent. DBMS, or Mass

438

Storage) directly streaming 1t to the Web browser window without ever going through
any kind of intermediate storage. This allows you in particular to verify that the file
object has successfully been migrated to its new destination.

While the data movement window is being updated and explanations are being provided.
the operations are carried out behind the scenes in real-ime. This demo nrovides a
window of observation into the integrated "Web-Database-Mass Storage” environment
{Marciane (8]

4.2 Dealing with time-outs

Time-outs are a delicate issue, given that all three servers (Web, [Hustra, UniTree) have
their own default ime-out thresholds. For example, an unsatisfied Web requent will nme
out alter a preset amount of time. gencrating a message wamning vou that the server you
are trying to connect to might be temporarily unavailable. The following solutions arc
first-level attempts at dealing with some of the more obvious time-out problems,

Access of large objects stored in UniTree may hang for a long time because of the
following two reasons:

1. The UniTree server has died.

2. The large object file has migrated to tape. It could take 10 minutes or more to stage
a file from tape to disk.

There are at least three scenarios that need 1o be handled:

1) The Hlustra server tries to connect 1o the UniTree server but the UniTree server 1s not
present. The current UniTree library causes the [Hustra server to hang indefinnely or
almost indefinitely.

Our solution is to make the connection request time out in 30 scconds. An error
message is sent to the client when a ime-out occurs

2} The large object file has migrated to tape and 1 may take 10 minutes or more 1o
stage the file from tape to disk. This causes the [llustra server 1o block until the file is
staged.

Our solution is 1o make the open request time out 1n 2 minutes. A warnmg
message is sent to the THustra client every 30 seconds to inform the user what has
heen taking place. When the 120 second time-out is triggered. another error
message 15 sent o the client hetfore failing,

439

3) The UniTree server dies when the Hlustra server is doing read/write operation to and
from Unilree There is a 2 second time-out for read/write in libnsl a. In this case a
regular read/write error message 1s sent.

5. Environmental Data Testing

This section describes how the example interface in section 3.1 was extended to handic
real-world data on an existicg enviro . ntal sciences application.

Please refer to the web location "http://iwww.sdse.edu/~sdbay” for more information on
the San Diego Bay Project. an environmental data repository which contains chemical,
physical, and biological data for the bay of San Diego and which can be accessed over the
Web through a clhickable map of the Bay. Currently, the project uses flat files and only
emulates a database engine.

“he integration effort has involved porting a representative subset of this environmental
aata directly to the Ilustra database and expenimenting with clickable map search
secaarios that allow the data to be displaved over the Web and stored both in the local
store of the Hluctra DBMS as well as on the UniTree mass storage store.

An example of a clickable map search interface for the Integrated San Diego Bay
prototype that we are developing is shown in Figure 3. After defining the appropriate
geographic box, an SQL query would be submitted to the Hlustra server. The query
would take the user-specified bounding box and intersect it with the list of yegistered
bounding boxes stored as metadata with each image. The image itself is stored as a large
object that can reside either on the Hlustra side or on the NSL UniTree side. To achieve
this result we wrote an Hustra SQL user-defined function (UDF) called GIS overlap():

create function G185 overliap! arrayof(real |, arravof!l real | }
rerurns boolean

language

Databases such as lHustra provide a special 2D Spatial Data DataBlade with more
efficient "GIS overlap”-like functions that on- could use directly.

The clickahle map interface (see Figure 3) allows the viewer to build a running list of
locations of interest in the bay and submit those to the search engine, which returns a list
of environmental files of interest, broken down into those three categories (physical,
chemical, and biological).

Clicking on the file name in RECORD 1 in Figure 4 would dispiay we actual file (see

Figure 5). Note here that the file is directly streamed from NSL UniTree to the Web
browser window.

440

As far as the user s concernad, this i fairly transparent, except when a file has boen
todally migrated off o wpe. and longer waiting periods occur. . This flexble schenwe
allows us o choose from a hicrarchy where specific data items might reside on the Web
Server's local disk, on the DBMS's disk, or all the was out on the Mass Storage arca,
which utselt allows pre-caching on the host Ka-6000 disk. We are currently ovaluating
where 1o store this environmental data i the storage hicrarchy

[Longitu
11711330

Figure 3; Clickable Map Interface

Figure 4: %01 quers resalis

Figure 5: Sample San Diego Bay Repository environmental data set

6. Expanded data access scenarios

The integration of database, archival storage and Web technology promises to facilitate
"¢ manipulation of large data sets and large collections of data sets. One goal is 1o
enable data analysis on terabyte-sized data sets retrieved from petabyte archives. at an
access rate of 10 GB/sec. Current supercomputer technology supports a T GB/s access
rate to | terabyte ot disk. For a teraflops supercomputer with 10 TB of disk, data rates on
the order of 10 GB/s will be feasible. This will require, however, support for parallel 1 O
streams, and support for striping data sets across multiple peripherals. Fortunately. the
sottware technology 1o support third party transport of data sets across parallel 10
streams is being developed in the HPSS archival storage system (Coyne [9). Watson
{101 Data redistribution mechanisms for the parallel data streams are being standardized
as part of the MPIIO (Snir [11. 12]) effort. The expectation is that the imitial usage
protofypes deseribed above can he extended to support supercompu et apphications tha
analyze arbitrarily large data sets.

A second goal is to provide ubiquitous access to scientific data sets. Scientific
applications should be able to access data and cache it locally no matter where the data is
originally located. Some of the key requirements of such a system are:

¢ heterogeneous data sources: Possible sources for data include databases, archives, file
systems, and anonymous FTP servers on the Web. An API is needed that will allow an
application to specify a data source, establish a connection, sclect a data set based on
requested attributes, and then cache the data set locally.

e parallel 1/0: Because of the size and number of data sets that can be accessed for
analysis, mechanisms for redistribution of data sets from multiple peripherals onto
parallel compute nodes are needed. The emerging MPI-1O standard will be the foundation
for the API we are constructing.

» distributed computation support: Data sets may be distributed to multiple platforms.
for analysis by methods that are retrieved from ORDBMS. Support for distribution of
computation objects is needed.

* third-party data access: If both data sets and computational methods are distributed to
a remote platform. mechanisms arc needed to allow the method to access a temporarily
cached data set.

e third-party authentication: Simi' i .cthods and data sets need to validate their
interoperation through an authentici. .- n mechanism that is independent of the local
operating system.

The end result is a data handling environment where the focus is on moving and caching
data rather than moving and distributing applications. The operating system at cach
server or compute platform controls use of the local resources. The data handling
ervirunment provides a higher-level infrastructure that supports remote access.
anentication, and data movement.

Ar example of this environment is shown in Scenario I. A user makes a request of a
remote system for a particular data set. The process consists of retrieval of an applet
stored on the local disk of the system, which is then used to access an ORDBMS
database. The data object is retrieved from the archive that is linked to the database.

A prototype of this system based on a Java interface to the Postgres95 ORDBMS is being
developed. Interfacing Java to Postgres95 required porting the Postgres95 client interface

444

library to Java. This enables a Web client that has Java capabilities 10 interact directly
with the Postgres95 DBMS. Part of this work has been inspired by a prototype developed
by John Kelly at the Blackdown site (fip: // substance.blackdown.org / pub / Java / Java-
Postgres95). In particular, we have added support for large objects, a functionality that
was not provided earlier.

User ~ Application

SP-2 |postgres95 Java Web
Server
UniTree —®

Scenario I: Pulling out applets and large object data

W
)

An improvement to this architecture is shown in Scenario H. The applet is st~ »d as a
method within the ORDBMS. The request to the Web server results in the extraction of
the applet out of the archival storage system, and its transmission to the remote user. The
applet is then excecuted on the remote system to access data objects through the
ORDBMS system.

445

User

SP-2

Application

Postgres95

L‘___.L Java Web

Server

UniTree

Scenario 1I: Pulling out large object applets

A further extension of the system is shown in Scenario IIl. The Web server interface is
directly integrated into the ORDBMS. A request for analysis of a data object results in
both the data object and the associated method being moved to a compute platform. To
provide data privacy, the data set may be encrypted. The encryption key is sent to the
method, thus providing both third-party authentication and niechanisms for controlling

third-party data access.

 }

Cray <4

Key

Workstation

Postgres95

HPSS

446

ESED

Scenario ITI: Third-party data access and third-party authentication

Finally, as shown in Scenario 1V, the above capabilities can be implemented directly
within 1/0 libraries that are used ! - a scientific application. The application then directly
accesses the remote database/archival storage system to retrieve a data set. Data
subsetting and redistribution can be provided by application of appropriate methods to the
data set on the compute platform which supports the ORDBMS.

Cray

DR2

HPSS

N\
=

Scenario 1V: Supercomputer analysis of scientific data sets

Acknowledgments

This work was supported in part by DARPA grant F19628-95-C-0194 on Massive Data
Analysis Systems, and in part by the NSF cooperative agreement ASC-8902827 for the
San Diego Supercomputer Center.

References

1. R. W. Moore, "High Performance Data Assimilation,” Proceedings of the Committee
on Information and Communications R&D (CIC) of the National Science and

Technology Council, July, 1995.
http://www.sdsc.edu/Enabling Tech/InfoServers/fHPDA htmi

447

2. R. W. Moore, "Distributed Database Performance." SDSC Report GA-A20776.
(December 1991).

3. The Design of a Parallel Data Handling System for Scientific Data Management and
Mining. Reagan W. Moore, Richard Frost, Mike Wan, Joe Lopez, Richard Marciano.
Submitted to PDIS, December 1996, Daytona Beach, Florida. http:// www.sdsc.edu /
EnablingTech / InfoServers / parallel-mining.html

4. Nlustra - IHustra Information Technologies Inc, "lllustra User's Guide".1995.

5. M. Stonebraker et al.. "The Implementation of Postgres”. IELE Transactions on
Knowledge and Data Engincering (March 1990).

6. M. Stonebraker and G. Kemnitz, "The POSTGRES Next-Generation Database
Management System." Communications of the ACM, 34 (10), 78-92 (October 1991).

7. Archivai Storage Research at SDSC, http://www.sdsc.edu/Enabling Tech/archstor.htm!

8. Richard Marciano, "High Performance Computing Web-Based Simulation
Environments". High Performance Computing 96, New Orleans. LA, April 8-11. 1.96.

9. R. A. Coyne. H. Hulen. and R. W. Watson, "The High Performance Storage System.”
Proc. Supercomputing 93. Portland, IEEE Computer Society Press (November 1993).

10. R.W. Watson and R.A. Coyne, "The Parallel I/0 Architecture of the High-
Performance Storage System (1HPSS)", the 1995 IEEE MSS Symposium,

11. M. Snir, S. W. Otto. S. Huss-Lederman, D. W. Walker. and J. Dongarra. MPI: The
Complete Reference. MIT Press, 1995.

12. Marc Snir, Peter Corbett, Dror Feitelson, and Jean-Pierre Prost. Draft Document for

a Parallel MPI 10 Library. (Draft documont presented for informal consideration in MPI-
2 standardization process), January 14 1994.

448

NEXT
DOCUMENT

The Challenges Facing Science Data Archiving on Current Mass
Storage Systems

Bernard Peavey and Jeanne Behnke
Earth Science Data and Information Systems Project 2 -
Code 505
Goddard Space Flight Center
Greenbelt, MD 20771

bernie peavey @ gsfe.nasa.gov
301-614-5279

jeanne. beknhe @ gste.nasa.gov
301-614-5326

Introduction

This paper discusses the desired charactenistics of a tapc-based pelabyte science data
archive and retrieval system (hereafter referred to as “archive™) required to store and
distribute several terabytes (TB) of data per day over an extended period of time, probably
more than 15 years, in support of programs such as the Earth Observing System (EOS)
Data and Intormation System (EGSDIS) Kobler [1]. These characteristics take into
consideration not only cost-effcctive and affordable storage capacity, but also rapid access
to sclected files. and rcading rates that are needed to satisfy thousaads of retricval
transactions per day. It scems that where rapid random access to files is not crucial, the tape
medium, magnctic or optical, continues to offer cost effective data storage and retrieval
solutions, and is likely to do so for many years to come. However, in environments like
EOS. these tape based archive solutions provide les. than full user satisfaction. Therefore,
the obijective of this paper is to describe the performance and operational enhancements that
need to be made to the current tape based archivai systems in order to achieve greater
acceptance by th EOS and similar user communities.

N
Hosts Disks
connection Tape
may be Library
network
or via media Note: includes software such as

operating system, doms, file
storage management system...

Figure 1. Generic Tape-based Archive

The archive discussed in this pancr shown in Fig.1. Its basic components - host,
m- gnetic disk (perhaps solid state + *..« zraphic memory in the not too distant future) for

449

caching/staging (hereafter referred to as “disk”), robotic tape library, input/output media
devices, and associated software (operating system, database, file management, resource
management, network, communication protocol, operation control, etc.) are assumed to be
fully integrated as an operational system, which could be centralized or distributed as
appropriate to the user cnvironment and data sources. The archive architecture and
configuration are assumed to be such as to allow expansion or growth from a nominal one
petabyte to 100 petabytc storage and performance capacity as data continue to be
accumulated and the number of users continues to increase. The archive is expected to store
and retrieve a variety of data types, the files of which may range from 1 KB (kilobyte) to
10 GB (gigabyte) in size. and handle thousands of user transactions a day. Being an
operational system required to satisfy a multitude of users (vs. a laboratory facility), this
archive is, therefore, characterized from a system’s rather than a component’s perspective.
For example, the performance of a given tape dnive is not addressed directly; rather, the
data transfer rate from disk to tape or from tape to disk, including all overhead associated
with managing cach data file before it lands in a given location, is specified. Thus, the
salient archive clLaracteristics addressed in this paper are: storage density, storage
organization and management, write rate, read rate, file access time. data
integrity/preservation. data retrieval/distribution, data interchange or intcroperability, and
operation controi. They are examined from an operational system’s perspective to hightight
their significance in realizing the archive’s desired capabilities.

Given the state of current technology and available archive components as desciibed in the
literature Shiclds [2] and observed in the field. can the subject archive be offered by the
vendor community at an affordable price”? This twofold question of performance and cost
is examined from the standpoint of real progress alrcady made i. this arca - a reality check,
and what remains to be done to reach the goal of achieving the desirable archive
characteristics at an affordable price.

Salient Characteristics

In discussing the archive’s salient characteristics, it is assumed that the system arc, itecture
allows the use of multiple tape drives, robots, dish banks and hosts as appropriate t©
achieve the desired capacity and performance, and the local network bandwidth is sufficient
to support this performance. As mentioned previously. these characteristics, which become
specifications when they are given specific/particular values. are considered from the
standpoint of a fully operational system, and their measurements are made on this basis as
well. This means that for systems which utilize multiple components operating in parallel.
e.g., tape drives or disk wu.ives, characteristics such as data transfer rate (write or read) 2ve
given as aggregate valucs, as illustrated in Fig. 2. In general, characteristics associated with
data transfer or data flow are considered to be “end-to-end”, viz., for storage, data transfer
begins when the data enters the host, and for retricval. data transfer ends when data lands
on the archive disk shown in Fig.1. System level characterization of the archive is key to
describing the archive’s capabilities in realistic terms and relating them to operational
expectation:.. Regrettably, the practice of characterizing archives at the system level is not
yet standard or even prevalent, perhaps because the vendor community does not usually
offer integrated archives as products. Instead, archives are typically specified in terms of
performance of their components such as tape drives, tape libraries, etc., which means that
a great dea: of system engineering and development effort must be applied by or provided

450

to the customer in order to realize the complete archive solution. From the archive
customer’s perspective, procuring the archive on the basis of system level charactenistics
presents the vendor community with an opportunity to offer fully integrated archive
systems as products and, hopefully, at lower cost to the customer. In any event. what
follows are the desired archive characteristics as scen by the end user. It should be noted
that at this time there are no commercial-off-the-shelf (COTS) tape-based archive systems
that include all of the desired characteristics. Adding new features to COTS products tends
to be very costly. Thus, by examining the following characteristics. it may be possible o
identify opportunities to enhance existing COTS products or to develop new products.

* Storage Density

e Storage Organization and Management
e Write Rate

f

Aggregate
____’»
Rm\e

R = individual rate
QD = tape drive)

R = individual rate

L TD = tape drive J

* File Access Time

* Data Integrity/Preservation
* Data Retrieval/Distribution
* interoperability

¢ Operation Control

Figure 2: Salient Characteristics of a Tape-based Archive

45]

Storage Density

Storage Density. given in terms of bytes/in. bytes/cm, or bytestape (with known tape
dimensions, i.e., width and length), is directly related to the archive’s storage capacity. For
example, the D3 tape canrnidge is advertised to hold 50 GB. Actually, from a system’s
perspective, the effective storage density is lower due to the associated file management
overhead, which increases with the number of files. In addition, data compression, if used,
must also be taken into account. Therefore, this characteristic should be given in tc. as of
effective storage density. A petabyte (PB) arcnive using 50 GB tape cartridges requires
20.000 cartridges which. at $50/umit, amounts to $1.000,000' Both numbers are
prohibitive, especially when extended to a 100 PB archive. Clearly, a tenfold increase in
storage density would be welcome within the next few years, and i | TB per tape capacity
wou'd be required in the near future. But, increased capacity (at the same cost and overall
size, of course) alone is not enough without higher read/write rates, and shorter file access
time to sustain a reasonable performance level. Is this a technological challenge, economic
(commercial demand) challenge. or both? The likely answer is that the challenge is
economic, but time will tell.

Storage Organization And Management

Storage Organization And Management (SOM) provides the capability to control the way
in which data files (hereafter referred to as “files™) are stored on and retrieved from tape.
For example, SOM selects tape drives (hercafter referred to as “drives™) and tapes, directs
the flow of files toffrom selected drives, provides logical and physical file organization,
maintains knowledge of file location and status, causes the robotics to load or unload
selected tapes (volume mounting/dismounting), controls access to each file, and keeps
statistics on file access frequency. In discussing this characteristic, #t is assumed that SOM
also controls the availability of the cache/staging disk (Fig. 1), which is part of the archive.
The criticality of this system level characteristic cannot be overstated with regard to system
performance, especially when ordered files such as those arriving from Landsat USGS (3]
are requested to be retrieved in random subsets, and the system has to manage a
continuously increasing file inventory on the ordes of 1-10 billion files.

In order to allow system performance tuning, the SOM should include, among others, the
following selectable options for writing files onto tapes:

(1) Chrenological order

(2) No file splitting across tapes

(3) File continuation on second tape (The first tape must identify the existence of a
partial file and provide the identification of the second tape. The second tape must
identify the existence of a continuation file and provide the identification of the first

tape. Note that no more than 2 partial files may exist on a given tape: the beginning
part of one, and the continuation part of another.)

(4) Unique file grouping (Writing a uniquely identifiable file collection on the same
tape, €.,,., files from a certain scientific instrument)

452

(5) Supcrfiles (Writing a collection of files as a super file so as to be retnieved as one
super file or as individual files)

(6) Data compression (Per whole tape)

(7) Maximum tape utilization (Random collection of files to minimize unused tape)
(8) File replication (Wniting the same file to different tapes or to the same tape)

(9) Tape duplication (Writing multiple tapes of same files simultancously)

(10) Simultancous file recording (Writing multiple files to multiple tapes
simultancously, see Fig. 2)

For data retrieval, the SOM must provide the following read options:
(1) Ordered files from a single tape (Per requested sequence)

(2) Ordered files from multiple tapes (e.g.. k files from tape 1. m files from tape 2, n
files from tape 3, etc.)

(3) Interlcaved files from multiple tapes (e.g.. file A from tape 1, file B from tape 2,
File C from tape 3, etc.)

(4) Superfiles (Collecting multiple files from a single tape or multiple tapes into one file
as requested)

(5) Compression/dccompression
(6) Tape quality information

The SOM must also include the capability to produce or write tapes that are self’ describing
so as to be read on any compatible drive external to this archive.

As a file manager of a growing archive, the SOM must be scalable to accommodate a 100
fold (from 100 million to 10 billion) increase in the number of files. In addition, it should
be applicable to centralized as well as distributed archive architectures. It would be nice if
the disk shown in Fig. | could be eliminated while still providing the desired SOM, since
by so doing the scalability problem could easily be solved, and one data flow hop could be
eliminated as well. However, barring that possibility, separating file management and
volume management should be considered as part of the scalability problem solution. In
addition, advantage should be taken of this disk to improve the efficiency of file storage
management and retrieval (e.g., executing the various writing options stated above,
distributing a given file to multiple users, collecting files located on multiple tapes to satisfy
a single data request). In general, the SOM should have the necessary features to optimize
the overall file storage and retrieval performance, while being independent of any operating
system (OS) as much as possible. This independence is crucial for the SOM software to be
able to run on any hardware platform, present or future, which is key to evolvabihty.

453

Although a number of SOM versions such as UmTree, AMASS, FileServ, which are
known as File Storage Management Systems (FSMS), are presently in use, they
incorporate only a few of the SOM options, and are strongly dependent on the platform’s
OS. Also, these FSMS do not conform to any standard since none exists yet. To achieve
plug and play COTS FSMS (or SOM) products, the vendor community must support the
development and adoption of a FSMS standard. It appears that the efforts made by the
IEEE and ISO over the years to develop an open systems standard have not borne fruit
yet. However, some activity in this area has been afoot which provides an opportunity to
revitalize this effort. Kobler {4]. Jones [5).

Write Rate

This characteristic defines the time required to read incoming files from the disk and writ-
(store) them to tape so that they can be retrieved upon request. As a system leve
characteristic, it includes the time to uniquely identify each file, append location metadata,
select the drives, load the tapes, perform compression (when required) perform error
protection for erroe detection and correction, write the files, update the catalog/database, and
return status. The write rate is given for a single or a multiple drive configuration. For a
multiple drive configuration, the write rate is the aggregate rate, viz., R(w) = R(1) + R(2) +
... + R(n), where R() are the individual write rates with all n drives writing simultancously
(See Fig. 2). For example, if the incoming data rate is 10 MB/sec (as expected from EOS),
the system could handle it with one drive, which must be capable of writing at a rate greater
than 10 MB/sec in order to compensate for delays due to FSMS overhead, and physical
tape handling functions such as robotics, loading and unloading. Altemnatively, the system
could accommodate this incoming data rate with multiple drives writing simultaneously at
an individual drive write rate lower than 10 MB/sec. Therefore, the write rate (which could
also be referred to as “storage rate™) is the effective end-to-end system rate at which files
can be stored in the archive. It is assumed that in cases where unique file grouping is
required, the disk provides sufficient staging and buffering capacity to feed the drives. To
write files onto a 50 GB D3 tape cartridge at 10 MB/sec requires the use of drives that cost
$150,000 each, which is expensive. It appears that the drive write rate needs to be increased
by a factor of 2 or more, and the drive cost needs to be reduced considerably to make a
petabyte archive more affordable.

Read Rate

This characteristic defines the time required to read (retrieve) files from tape and write them
to the disk for distribution. As a system level characteristic, it includes the time to read the
data request, identify and locate the tapes of the requested files. access the files, read the
files and write them to the disk with error detection and correction (EDAC) applied,
append the metadata, and return status. This read time is comprised of 2 components: file
access time, and the timc to read the file. The file access time is described in the next
paragraph as a separate characteristic, although it ts included here as part of the read rate
definition for completeness. The read rate is given for a single or a multiple drive
configuration. For a multiple drive configuration, the read rate is the aggregate rate, viz.,
R(r) = R(1) + R(2) + ... + R(n), where R() are the individual read rates with all n drives

454

reading simultaneously (See Fig. 2). For example, if the required outgoing data rate is 30
MB/sec (as expected for EOS), the system could support it with one drive, which must be
capable of reading at a rate greater than 30 MB/sec in order to compensate for the delay due
to file access time. Alternatively, the system could accommodate this outgoing data rate
with multiple drives reading simultaneously at individual drive read rates lower than 30
MB/scc. (Of course. if all requested files were to be located on the same tape, the multiple
drive configuration would not meet the 30 MB/sec output rate). Therefore, the read rate
(which could also be referred to as “retrieval rate”) is the effective end-to-end system rate
at which files can be retrieved from the archive. It should be noted that, based on current
technology, the file access time can become so significunt when many files have to be
accessed on many tapes as to require additic al drives to compensatc for it. The
requirement for multiple dnves should also be considered in light of the user response
requirements, namely, the number of users that need to be served simultaneously. This
aspect is discussed later as part of the Data Retrieval/Distribution Characteristic. Generally,
the read rate requirement is significantly more stringent than that for the write rate, not only
because more data is going out of the archive to users, but also due to the need to minimize
waiting time for non-uniform data request distributions. Therefore, to accommodate
thousands of transactions a day, the archive may have to utilize 10-20 drives which, on the
current market, may cos® $1.5 million to $3 million. This is prohibitive, and points to the
need for improved drive performance and cost reduction.

File Access Time

File Access Time (FAT) which is pant the previous read rate characteristic, is the total
system time required to locate a given file in a tape-based archive following the issuance of
the request to retrieve it. This time includes file identification, drive and tape selection,
robotic motion/travel, loading the tape, reaching the desired file in a position ready to be
read, unloading and returning the tape to its bin. The current technology achieves a FAT of
1-2 minutes, depending on the tape length and file location. Clearly, this lowers the
effective retrieval rate, especially when many files have to be retrieved from many tapes.
To cope with such a delay, today’s archives must utilize multiple drives, with attendant cost
increases. Therefore, the FAT must be reduced by a factor of 3 or more to improve the cost
performance ratio, and allow the on-line user to start receiving data within less than one
minute from the time of having made the request.

Data Integrity/Preservation

A persistent archive requires that files stored on tape be entirely preserved with no
degradation of their content during the archive’s life (30 years). Therefore, the system must
be capable of monitoring the state of data quality (e.g., BER), and the physicai condition of
the medium to determine when to refresh (transcribe to a new tape) or just rewind a given
tape, and do so automatically or under operator control. These actions should be based on
frequent checks of the BER, which should not exceed 1 in 10 to the 12th bits (each time a
file is read or at specified time intervals), file access frequency, and time in storage. In
addition, a backup capability is needed to make and manage copies of selected tapes or
files. Since in today’s systems the capability of this characteristic seems to be limited to
manual intervention, this capability should be enhanced to the fullest level.

455

Data Retrieval/Distribution

This characteristic defines the manner in which files are to be retrieved and distributed to
users electronically or on media (tape, CD-ROM, the drives of which are assumed to be
included in the archive). For example, it should be possible to retrieve and distribute files in
whole or in part, in specific’ order (e.g., chronological - oldest file first, or most recent file
first; per list specified in the request; or other), grouped by category (e.g., instrument;
science discipline; product type), random file collections, file interlcaved by tape (a given
file from tape 1 followed by a given file from tape 2, etc.), and compressed or
uncompressed format. Format conversion is a separate service which may be included in
the archive system. This system level characteristic applies to both software (FSMS or
SOM, DBMS, request processing) and hardware components’ performance in order to
achieve the desired data outflow rate. It is assumed that an appropriate DBMS is available
and is included in the archive to serve the file catalog and file search functions, however,
the schema design and implementation is a user provided application. It is also assumed
that the disk capacity and speed (data transfer rate), the number of drives and their read
rates are sufficiently high to support the required data distribution rate and the number of
simultaneous data requesters.

As mentioned previously in the Read Rate paragraph, to support the requirement to retrieve
and distribute several terabytes of data per day in response to thousands of transaction
requests is very demanding of software (FSMS, DBMS, NFS) and hardwar-
performance. W~ today’s technology available on the market, this requirement can be met
only by using lcis of expensive hardware. Therefore, it is imperative that the hardware
performance and reliability be greatly improved to make petabyte archives less costly.

Interoperability

This characteristic is intended to allow the archive components to be changed out in a “plug
and play” manner without affecting the archive’s functionality, and to support media-based
data interchange (providing data to and distributing data from archives and users) among
archives and uscrs. In addition, the archive architecture must provide for the application
software and user interface software to be independent of a given hardware platform and its
OS. Thus, this charactenstic, allows the archive to be scalable and evolvable as capacity and
performance requirements continue to grow, and superior technology becomes available.
To realize such a characteristicc COTS products (hardware and software) must comply
with appropriate standards which are yet to emerge. Regrettably, today’s products do not
lend themselves to open interchanges. For example, tape formats are unique to the
systems, FSMS are tailored to specific platforms and OS. and information describing their
implementation is proprietary.

With regard to developing archive system standards, it should be mentioned that the work
begun under the IEEE and ISO sponsorship has not progressed as far as was expected.
Perhaps this slow progress can be attributed to the approach undertaken by these groups,
without realizing that advances in archive and Intemet technology are occurring at a much
more rapid pace than anticipated, thus diminishing the desire of system developers and

456

vendors to wait for these standards before participating in the market and application
opportunities. A better approach to developing archive system standards would be the
model of the IETF. As Dave Clark of the IETF said in 1992: The IETF (Internet
Engineering Task Force) credo is:

“We reject kings, presidents, and voting.

We believe in rough consensus and running code.”

Perhaps this nontraditional approach taken by the IETF group should be followed in
developing the standards for Mass Storage Systems (MSS) and FSMS. Rather than
following a top-down approach to include “all or nothing™, it might be more productive
and effective to pursue the incremental and less rigorous approach with the notion that
“having a standard is better than nonc”. The EOSDIS Project at the Goddard Space Flight
Center is participating in the effort to develop these standards, and is committed to using
them.

Operation Control

This characteristic describes the extent to which system operation shouid be controlicd
automatically. The most desirable feature would be full automation or “lights out™ mode of
operation, where the only required interface is the user, while the operator/technician
performs maintenance, or user services type functions. To achieve a high degrec of
automatic control, the system must be capable of self checking, monitoring ongoing
activities, sensing critical conditions and reacting to them, controlling resources, balancing
workloads, managing request queues, tracking user requests to the file level, accounting for
resource utilization per user request, helping users, monitoring system performance and
quality, collecting production statistics, reporting and logging events, issuing remedial
instructions, etc. (Also, it would be nice to have the system repair itself, but for now this
must remain a drcam to come true). Unfortunately, today’s systems require considerable
operator intervention in running an archive. Therefore, such intervention should be
minimized at best in order to control the operation cost.

Discussion

A growing tape-based petabyte archive for science data, which is the subject of this paper,
is described in terms of its salient characteristics, and their implication on the architecture,
implementation, acquisition, and cost thereof. ldeally, these functional and performance
characteristics should be sufficient to specify the desired archive (large or small) so that it
could be procured at a reasonable price from a given vendor as a COTS product, consisting
of COTS components which the vendor would select, integrate, test, demonstrate, and tum
over to the customer as a fully operational archive. The customer’s invoivement in this
process would be nrinimal except for a fixed price proposal/bid evaluation and acceptance
testing. To use the archive acquisition approach described above, which is expected to
result in considerable cost savings, the customer must know what is needed. the
technology must be mature, suitable components must be available as COTS products that
are compliant with industry standards, and there must be a market for these components.
By examining these characteristics in light of available COTS products, the aforementioned
premises are not all satisfied at this time. The most critical of these premises are technology

457

and standard COTS products that would satisfy the desired functionality and performance
requirements at a reasonable cost. Historically, not much has happened until 1995, when
new tape drives and cartridges were introduced that boosted the read/write rates to 10
MB/sec, and increased the storage capacity to 20 GB per 3480 type cartridge (higher
capacities are on the way, c.g., the D3 cartridge). However, more work is needed to
produce a 1 TB cartridge, and a 30 MB/sec read rate drive with a file scarch time of less
than 20 seconds anywhere on the tape. In the DBMS and FSMS areas, plug and play
products are not yet available. Perhaps there will be an opportunity to develop a standard
modular (to allow for incremental addition of features and scalability) SOM product which
can be plugged into a microkernel type OS. Of particular interest and concern are the
scalability and evolvability aspects of FSMS and DBMS COTS products in the absence of
open system standards. The promises made in 1991 Rybczynski [6], McLean [7] toward
the realization of petabyte archives have been slow in coming. It seems that the challenge to
do so is still up for grabs.

The salient characteristics approach describes and specifies the archive at a system level
because these characteristics are directly related to the user's needs or expectations, and can
be measured on that basis. By so doing, the vendor is offered the opportunity to be creative
and cost-effective in producing the optimum archive system in terms of functionality and
performance. For example, selection of the type and number of tape drives should be a key
consideration for a petabyte tape-based archive to achieve the required storage and retrieval
rates, and to satisfy the required number of simultaneous user requests. Similarly, the
vendor has the choice of sclecting the hardware platforms and disks, as well as the
appropriate software components. (Please note the emphasis on the vendor rather than the
customer). Thus, vendors have the opportunity to offer standard archive components, or
fully integrated, scalable turn-key archives. At this time, it is still necessary to stage files on
disk as part of the storage and retricval operation. (How nice it would te if disks could be
eliminated from this operation). Therefore, adequate disk capacity and speed (data transfer
rate) must also be a key consideration.

In conclusion, it appears that affordable (less than $10 million) tape-based petabyte
archives for science data are difficult to find on today’s market. However, it might be
possible to find them in the near future with the help of enhanc:d techn logy, standard
COTS products supporting plug and play system architectures, system level procurement
specifications, integrated archive system products, turn-key system acquisition, and open
storage system standards. The time must come when a | petabyte archive could be
expanded or scaled up 100 times by simply replacing (plugging in) existing components
with new more powerful components as they become available, in a manner completely
transparent to the user, and at reasonable cost. That is still a challenge.

Acknowledgements:

We wish to acknowledge the invaluable assistance of P.C. Hariharan of Systems
Engineering and Security, Inc in the preparation of this document.

458

References:

1. Kobler, B. J. Berbert, P. Caulk. P.C. Hariharan, “Architecture and Design of Storage
and Data Management for the NASA Earth Observing System Data and Information
System (EOSDIS),” Fourteenth .EEE Symposium on Mass Storage Systems, Monterey,
CA. November 1995.

2. Shields. M.. “Toward a Heterogencous Common/Shared Storage System
Architecture,” Fourteenth IEEE Symposium on Mass Storage Systems, Monterey, CA,
November 1995.

3. US Geological Survey and National Oceanic and Atmospheric Administration,
“Landsat User’s Guide,” available from the EROS Data Center at URL:
http://fedcwww _cr.usgs.gov/glis/hyper/guide/landsat_tm

4. Kobler, B. and J. Willhiams, “A Straw Man Proposal for a Standard Tape Format,”
Al International Conference (IEEE), Chicago, IL.. 1996.

5. Jones, M., J. Williams, and R. Wrenn, “A Proposed Application Programming
Interface for a Physical Volume Repository,” Fifth NASA Goddard Conference on Mass
Storage Svstems and Technologies, Scptember 1996.

6. Rybczynski, F., “Network Accessible Multi-Terabyte Archive,” Proceedings of the
NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth
Science Applications, Goddard Space Flight Center, July 1991.

7. McLean, R. and J. Duffy. “IC1 Optical Data Storage Tape,” Proceedings of the NSSDC

Conference on Muss Storage Systems and Technologies for Space and Earth Science
Applications, Goddard Space Flight Center, July 1991.

459

NEXT
DOCUMENT

Processing Satellite Images on Tertiary Storage: A Study
of the Impact of Tile Size on Performance'

JieBing Yu
David J. DeWitt
Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St.

Madison W1 53706
{jiebing, dewitt} @cs.wisc.edu

608-263-5489 FAX: 608-262-1204

1. Introduction

In July 1997, NASA will begin to launch a scries of 10 satellites as part of its Mission to Planet
Earth, more popularly known as EOSDIS (for Earth Observing System, Data Information Sys-
tem). When fully deployed, these satellites will have an aggregate data rate of ~bout 2 megabytes
asecond. While this rate is, in itself, not that impressive, it adds up to a couple of terabytcs a day
and 10 petabytes over the 10 year lifetime of the satellites [1]. Given today’s mass storage tech-
nology, the data almost certainly will be stored on tape. The latest tape technology offers media
that is very dense and reliable, as well as drives with transfer rates in the same range as magnetic
disk drives. For example, Quantum’s DLT-4000 drive has a transfer rate of about 3.0 MB/sec
(compressed). The cartridges for this drive have a capacity of 40 GB (compressed), a shelf life
of 10 years, and are rated for 500,000 passes [2]. However, since tertiary storage systems are
much better suited for sequential access, their use as the primary medium for database storage is
limited. Efficicntly processing data on tape presents a number of chal’enges [3]. While the
cost/capacity gap [4] between tapes and disks has narrowed, there is still about a factor of 2 in den-
Jity between the best commodity tapc tcchnology (20 gigabytes uncompressed) =xd the best
commodity disk technology (10 gigabytes uncompressed) and at least a factor of 4 in :otal cost
($2,000 for a 10 GB disk and $10,000 for a 200 GB tape library).

Raw data from a satellitc is termed level O data. Before the data can be used by a scientist it must
first undergo a number of processing steps including basic processing (turning the electrical volt-
age mecasured for each pixel in a image into an digital value), cleansing, and geo-registration
(satellites tend to drift slightly between passes over the “same™ area). The end result is a level 3
data product consisting of a series of geo registrated images that an earth scientist can use for
his/her research. Processing actually expands the volume of data collecied by a factor of 2 or 3
and the original data r. .eived from the satellite is never deleted. Thus, the processing and storage
requirements actually exceed the 2 terabytes/day figure cited above. As part of the EOSDIS proj-
ect, NASA has contracted with Hughes to build such a system.

Once processed the data is ready for analysis by an earth scientist. Analysis involves applying a
serics of algorithms (typically developed by the earth scientists themselves) to a large number of
images in a data set. Frequently a scientist will be interested in a certain type of images for a par-
ticular region of the earth’s surface over an extended period of time.

The focus of this paper is how best to handle images stored on tape. We make the following as-
sumptions:

' This work is supportzd by NASA under contracts #USRA-5555-17, #NAGW-3895, and #NAGW-4229, ARPA through
ARPA Order number 018 monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-Q508, IBM,
Intel, Sun Microsystems, Microsoft, and l.egato

460

1. All the images of interest to a scientist are stored on a single tape.
2. Images are accessed and processed in the order that they are stored on tape.

3. The analysis requires access to only a portion of each image and not the entire image.

With regard to the first assumption, while the images from a single sensor will undoubtedly span
multiple tapes, it makes little sense to mix images fiom different sensors on the same tape.
Analysis requiring access to multiple tapes (for data from cither the same or different sensors) can
use the techniques described in [5] to minimize tape switches in combination with the techniques
described below. The second assumption requires that the reference pattern to the images be
known in advance so that the references can t > sorted into “tape order.” In some cases, this order
can be determined by examining the meta data associated with the data set. In a companion paper
{6] we show how a new tape processing technique that we call “query pre-execution” can be used
to automatically and accurately determine the reference pattern. The third assumption is based on
the fact that satellite images are quite iurge (the size of an AVHRR image is about 40 megabytes)
and scientists are frequer.ily interested in only a small region of a large number of images and not
each image in its entirety. The EOSDIS test bed [7] also places a strong emphasis on providing
real-time dynamic subsetting of AVHRR images.

There are two alternative approaches tor handling tape-based data sets. The first is to use a Hier-
archical Storage Manager (HSM) such as the one market=d by 'EMASS {8]. Such systems al-
most always operate at the granularity of a file. That is, 2 wh.ole file is the unit of migration from
tertiary storage (i.e. tape) to secondary storage (disk) or memory. When such a system is used to
store satcllite images typically each image is stored in a separate file. Fefore an image can be
processed, it must be transferred in its entirety from tape to disk or memory. While this ap-
proach will work well for certain applications, when only a portion of each image is needed it
wastes tape bandwidth and staging disk capacity by transferring entirc images.

An alternative to the use of an HSM is to add tertiary storage as an additioaal storage level to the
database system. This approach is being pursued by the Sequoia [9] and Paradise [10] projects.
Such an integrated approach extends tertiary storage beyond its normal role as an archive mecha-
nism. With an integrated approach, the database query optimizer can be used to r,..:mize accesses
to tape so that complicated, ad-hoc requests for data on tertiary storage can be executed efficiently.
In addition, the task of applying a complicated analysis to a particular region of interest on a large
number of satellite images can be performed as a single query [11].

Integrating tertiary storage into a database system requires the use of a block-based scheme to
move data between different layers of the storage hicrarchy in the process of executing a query.
While 8 KB is a typical blcck size for moving data between memory ard disk, it is too small to
use as the unit of transfer between tape and either memory or disk, especially when dealing with
large raster images. The approach used insteac by Postgres [5] and Paradise [10] is to partition
each satellitc image into a set of tiles. Tiles become the unit of transfer between tape and memory
or disk while a smaller disk block (e.g. 8K bytes) is used to transfer data between disk and mem-
~y (i.e. the database system buffer pool). When a query references a portion of an image resi.
ing on tape, the meta data associated with the image is used to determine the minimum number -
tiles necessary to satisfy the request. These tiles are first moved from tape to disk in tile-sized
units and then from disk to memory in units of disk block size."

" Actually data cannot be moved directly between two mechanical devices such as tape and disk without first passing
through main memory Thus, a tile 1s first read by the tape controller into memory and their written to a tape *lock cache

461

This paper exammes the impact of tile size on the time required to retrieve one or more partial (ie

chipped) images - csiding on tape. The evaluation employs a simplified analytical model, a simple
simulation study to venfy the analytical model. and actual implementations using both a stand-
alone program and the Paradise database system, extended to include support for tertiary storage
[6]. Our results indicate that the carcful selection of tile size can reduce the time required to clip a
series of images residing on a single tape. In particular. we demonstrate that for tape drives such
as the Quantum DLT-3000. a tle size n the range of 32 KB to 512 KB provides the best reor-
formance for a vaniety of image and clip region sizes. ,
The remainder of this paper is organized as follows. Section 2 deseribes the problem and the deri-
vation of the analvtical model. Section 3 « scnibes the simulziion experiments and analyzes their
results. Section 4 examines the impact of tile size under a variety of experiments using Paradise as
a test vehicle. Section S contams our conclusions and discusses future work.

2. Ana'vtical Model

In this section we describe 2 simplified analytical model to compute the time to clip a single raster
image by a rectangular regoon. We assume that the tape head is positioncd at the beginning of the
mmage. Thic modet 1s then used to study the effect of tile size on the tine to clip a raster image.

2.1 P:oblem Description

As discussed in Section {, aling | artitions an image into smaller, rectangular pieces that preserve
the spatial locality among aciacent pixels. Figure | depicis three alternative partitioning strategies of
a single 1mage and their ¢ +-mding linear lavout on tape. The top left rectangle represents an
untiled image. The mudd. . . . nght rectangles in the top row show the same uiage partitiened
mto 4 e and 16 tiles respectively. Once an image has been tiled, the tiles are stored sequentiatly
on tape. 1he bottom portion of Figure 1 dunicts how each of the three tiling alternatives is laid out
or. tape. assuming that tiles are placed on tape in a row-major fashion. While the choice of using a
row-major layout m- - affect performance. we will demonstrate that tile size is the dominating
factor, and not whether tiles are laid out on tape in a row-major or column-major order.

Figure - Single Image as 1. 4. 16 Tiles and their Linear Lavout

o dshe Whide one contd read nles dirccthy mte the databas y buffer pool. this appraach wads 10 foad the buller pool
with largce amonnts of 7 rmation forcmng more valuable infomation vt

The dashed rectangle in Figure 1 corresponds to the portion of the image that the analyst wishes to
examine — what we term the clip region. The shaded area indicates which tiles must be retrieved
from tertiary storage in order to satisfy the clip request. The impact of tiling is best illustrated in
the comparison between the untiled image (top-left rectangle in Figure 1) and the 16-tile image
(top-right rectangle in Figurc 1). For the untiled image, the entire image must be rcad from tape in
order to process the clip request. On the other hand for the image that has been partitioned into 16
tiles, only 9/16ths of the image (9 of the 16 tiles) must be read. However, the number of seek op-
crations increases from O to 3 assuming that the tape head is initially positioned at the start of the
image.

In general, the usc of tiling can reduce the amount of data that must be transferred when clipping
partial images. On the other hand, it can introduce additional seek operations between consecutive
tile accesses. The total time spent in migrating the necessary parts of the image to memory or
disk deper-'s on the tape seek speed, the tape transfer speed, and the seek startup cost. The seek
startup cos: 1s a fixed ovethead associated with each tape head movement while the tape seck
speed indicates how fast the tape head can be advanced when not actually read/writing data. To-
gether, these two paramcters d=termine the random access latency on a single tape. In addition,
there are a number of other factors that affect perfformance. For example, consider the image in
Figure | that was partitioned into 4 tiles. For the clip request shown in Figure 1, this partition
strategy has no advantage with respect to the number of secks performed or the amount of data
transferred compared to the untiled image. Other clip requests would have different results; for
example, if the clip region was entirely contained inside tile // of the 4 tilc image. In this case, the
untiled image would incur no seeks but would transfer the entire image. The image tiled into 4
picces would incur onc seek (to the start of tile II) and would transfer _ of the image. The image
tiled into 16 pieces would incur two secks (on~ to transfer tiles 2 & 3 and a second to transfer tiles
6 &7) and would also transier __ of the image. Thus, both the size and location of the clip region
can affect the performance of the various tiling alternatives. In order to better understand the
problem, we devcloped an analytical formula to model the average-case behavior.

2.2 Model Assumptions

I order to reduce the complexity of the problem. the analytical model makes the following as-
sumptions:

1. Each tile is stored as a single tape block, which is the unit of migration from tape to mem-
ory.

2. The iape head is initially positioned at the beginning of the image.

3. Images are square (e.g. Sby 5 or 9 by 9 tiles but not 4 by 6 tiles).

¢ Tte shape of the clipping region is proportional to the image shape, and the clipping region
is always contained inside the image boundary.

5. Clipped tiles are returned from tape in their original order stored on tapc.

The first assumption eliminates the indirect effect of tape block size since multiple tiles couid po-
tentially be packed into a single tape block. We examine the effect of this assumpticn in Section 3.
The second assumption allows us to concentrate on a single image without considering the residual
impact from tl.e previous tape head position. The third and fourth assumptions reduce the number
of parameters that must be considered since variations in tile size and the shape of the clip region
may citect performance. This will be discussed in Section 4. The final assumption minimizes the
r: ndomness between seeks within o. - clip operation.

463

2.3 Analytical Formula Derivation

We model the response time to migrate the tiles containing the clipped region from tape to mem-
ory as the sum of the time spent in the following four operations: Initial Seek, Intermediate
Seeks, Tile T unsfer, and Total S2ek Startup. Table 1 contains all the symbols used in the analytical
model. Figure 2 graphically illustrates the roles of a number of the symbols. Note that each tile
has unit length 1, @15 an integer, and the fraction part of b is modeled as b ~15]. From Figure 2 it
is obvious that the number of tiles coverc d or partially covered by the clip region varies depends on
the particular position of the clip area. The probabilities of the various clip locations are calculated
below. Finally, we analyze the time spent on each of the four operations to produce a formula that
captures the average case behavior.

[Dr cription Symbol Comments
"lmagf: Size M KB
%mu 1 KB

Image Dimension axad tiles =alt

Clip Dimension bxb tiles | Clip Size=5" -t
_‘fﬁi;a Ared/ Image Area ;lez a=cb
“Tape Scek Rate S KB/Sec

Startup Seek Cost 1 Sec
Wmnsfer rate R KB/Sec

Tabie 1: Parameters

Figure 2. Target Clip Region

Four Clip Cases

As illustrated by Figure 3, there are four different ways that a region of constant area and shape can clip an
tmage:

Case 1 - touches (L&]+ 2) tis;

Case 2 - touches ({4 14+2)x (5] +1) tites {elongated horizontally);
Case 3 - touches ({4]+ Dx (LA]+ 2) tiles (etongated vertically};
Case 4 - & LA+ tiles.

464

In each case, the placement of the upper left comer (P) of the clip region is restricted to certain tiles
in the image and certain regions within each of those tiles. The dark gray tiles in Figure 3 show the
tiles where P can possibly reside, and the four regions in Figure 4 show where P can be placed
within each of those tiles for each case. The probability for each of the four cases™ can be deter-
mined by exarining the placement of P. Since the total area (4) containing P is (a—4)°, the
probability, Pb, for each case can be derived by considering the number of tiles (F) where P can
be placed and the area (4f) within each of those tiles. Then, Ph= F - 4f JA.

Figure 3: Four Clip Cases

Figure 4: Regions in which P can reside for the different cases (within one tile)

The probabilities of each of the four cases occuming are specified below:

Case I: F = (a=|b]-1}. 4 = (b—|b))° (ara D), then
Phl = (a-6]-1) - b-[b]?] (a-b).

Case 2: F = (a-[b]) (a-1bi-1), Af = (b=Lb)) (0 ~(6-|b]) (area B), then
Pb2 = (a-1b))(a~1b]-1) (b-LbD) - (A= (b -6/ (a-b).

" Assumoig a uniform distribution of clip sizes <. d locations

465

Case 3: F =(a-1bl-1)-(a-|b), 47 = (1-(d-1b)))-(b-Lb)) (area O). then
Pb3 =(a-|b]-1)-(a-1b))- 0 -(b-Lb])-(b-Lb]] (a-b).
Case 4: F = (@a-1b))’, Af = 1-(b-1b)))® (area A), then
Pb4 = @a-[b) - -(b-16])*] (a-b).
Initial Seek Time (TY)

The Initial Seek Time, Tf, is the time required to move the tape head from the beginning of the image to the
first tile touched by the clip region (indicated as S1 in Figure 2). From the analysis above, we know that
the upper left comer (P) of the clip region can only reside in a restricted area depending on the various
cases. Suppose this area is M by N at the upper left comner of the image, then P has an equal probability of
being in any of the Xby Y tiles in this region. Assume that P is in the tile defined by row I and column j

(0<i< M. 0< j< N). Then, the number of tiles that must be skipped to reach P from the beginning

A~

of the image is j +i-a. On average,) Z:,I(i +i- a)Y(M - N') tiles are skipped to reach the first

tile covered by the clip. Hence, Tf = (@:‘;' 2:0'(/ +i -a)Y(M -N)) -1 /9 . Applying this to each
of the four 4 cases in Figure 3, we get:

Case I: M =N =(a-|b]-1), then

Tf1= ((2:”’2 X G .a)Y(a ~|bJ-1y) .t /s*

Case 22 M=(a-|b]-1. N=(a-1b]), then

3=(EL T G a))fa-16)-1) o fs

Case 3: M=(a-Lb]). N=(a-1b]-1). then

2= ((Zj” DI IEY -a))/((a ~16)) (a-|b)- 1)))- ‘ /S

Cased: M= N =(a-—l_b_|), then

mra= (@5 TG ri-adYla- 1))1 fo
Finally, the Initial Tile Seek Time is given by :
Tf=Pbl-Tf1+ Pb2-Tf2+ Pb3-Tf3+ Pb4-Tf4.

Intermediate Seek Time (T7)

The Intermediate Seck Time, Ti, is the total time spent seeking between transfers of contiguous sets of tiles
contained in the clip region. For example, in Figure 2 above, after transferring the set of tiles in region TI,
we must perform seck 82 before we can transfer the tiles in T2, and, after transferring the tiles in T2, we
must perform seek S3 before transferring the tiles in T3. Afier the transfer of aset of comtiguous tiles, the
tape head must be moved to the next group of tiles affected by the clipping region. Assuming that the tiles
touched by the clip region form aX by Y region, then the pumber of tiles to be skipped over after the initial

seek is (@~ X)), and there are (¥ ~1) such movements. Thus, Ti=(a~ X) (Y-, ‘1fS. Applying
this to all the cases in Figure 3, we obtain:

Case I: X =Y =(h]+2), then Til =(a-(LbhJ+2))-(LJ+ D-1fS:

466

Case 22 X ={b]+2). ¥ =(b]+1), then T2=(a-- (bJ+2))-Lb]-¢/S:
Case = X =(lbJ+1). Y =(b]+2), then Ti3 =(a-(LbJ+ V)-(Lb)+1)-1fS:
Case 4 X =Y =({b]+1). then Tid=(a- (bJ+1)-|b}-1/S.
Finally, the Intermediate Seek Time 1s
Ti= Pbl-Til + Pb2-Ti2 + Pb3-Ti3 + Pba-Ti4 .

Transfer Time (Tr)

The Tile Transfer Time, Tr, is the total ime spent transferring tiles in the clipped region to memory (T/,
T2 and T3 in Figure 2). Based on the same assumptions made when calculating the Intermediate Seek
Time, X -} tiles must be transferred . This leads to: Tr=X-Y-t/R. Again, analyzing the different
cases in Figure 3 using this formula, we obtain:

Case 1: X = ¥ =(1b]+2), then Tri=(b]+2)* -¢JR;
Case 22 X = (h]+2), Y =(b]+1). then Tr2=(b]+2)-(Lb]+1)-¢/R:
Case 3: X =(Lb]+1). Y=(b]+2), then Tr3=(lb)+1)-((6]+2)-tJR:
Casc 4: X =Y =(bJ+1). then Tra=({b]+1)" -1/R.

The overall Transfer Time is :

Tr=Pbl-Trl + Pb2 -Tr2+ Pb3-Tr3 + Pb4-Trd.

Seek Startup Time (Ts)

Each tape seek is associated with a fixed startup overhead which we model with the vanable Seek Startup
Time, Ts. This overhead only depends on the number of seeks performed, and not the size of each seek
operation. Using the same X -} region as above, then Y sceks are needed for each clipand Ts=VY 1.
Breaking this into the different cases yields:

Case 1: Y= (b]+2),then Tsl=(b]+2)-I:
Case 2: Y = (b]+1), then T2 = (b} +1)-1;
Case 3: ¥ = {b+2), then Ts3=(|h]+2)-1;
Case 4: Y =(b]+1), then Tsd = (lb)+1) I.
Finally, Ts= Ph1- 151+ Pb2-sr2+ Pb3-Ts3+ Pb4-Tsh.

Total Response Time
The Total Response Time, T, is the sum of the four terms above:
F=7t+Ti+Tr+Ts=f (a. b.S.R.I)" To make our results easier to interpret, we substitute image

" Th2 whole formula of T, even after simphfication. 15 too comphicated to present Instead, we will show its parameters and
present them graphically

467

size M, tle size ¢, and clip selectivity ¢ for gand 0 (c=a/b and

T=f(Mur.cS.RI).

M=a’1).

Now

For analysis purposes, we fix the image size M and the clip region size (l/c2 of animage). Under these
conditions, the formula reveals the following interesting properties: as the tile size increases, the seek time
(including Tf, Ti, and Ts) decreases while the transfer time (7r) increases. The combination of these two
opposite effects makes the response time a complex function of the ule size.

Analytical Model Analysis

To help understand the implications of the response time formula T derived above, we next evaluate it for a
variety of parameters, plotting the response time as a function of the tile size. The values for the various
parameters are listed in Table 2. The image size is varied from 8 MB to 128 MB and the clip selectivity
from 1/4 to 1/256 of the image. The tape-related parameters (S, R, /) are selected based on the Quantum
DLT-4000 tape drive [2] with compres sion turned off.

Parameter | Values Evaluated
M 8 MB, 32 MB, 128 MB
c 2,4,8,16
S 2,048 KB/Sec
R 1,356 KB/Sec
l 0.1 (Sec)

Table 2: Selected values for parameters

T! - response times for a variety of image and clip size combinations along with the gain relative to always
fel hing an entire image are shown in Figures 5to 7. These results indicate that, as the tile size is increased,
the response time first decreases slightly before increasing and that tiling provides a significant benefit
cempared to fetching an entire iniage.

8 0
—&—1/4 Clip
6)
—&—1/16 Clip
4 —h—1/64 Clip “
2 —— 1/256 Clp 2
0 4———t - 0
-20
2 8 2

128 512 pnumige

Tile (KB) -~ 8 MB Image

k4
512 8192

Tile (KB) -- 8 MB Image

—&—1/4 Clip
—&— 1/16 Clip
—d— 1164 Clip
—%¢— 1/256 Clip

Figure 5 Response Tuie and Performance Gain over Entire Image Transfer for 8 MB Images

" Because DL T uses serpentine tapes the seek time is not a hnear function of the seck distance. For the DLT4000 we ob-

served a maximum seck time of 180 between two random blocks 1f the seek is within a single track the seek time is clv ¢
10 a hinear function [12] contams an accurate modcl of seek time for DLT drives

468

0
15
10
5
0
2
A S
Tile Size (KB) - 32 MB
Image

—— 14 Clp
—8— 1/16 Chp
—=&— 1/64 Chp
—3— 1/256 Clip

0
&0 —o—1/4Clp
2 —a—1/16 Clip
0 —a&—1/64Clip
fg —3— 11256 Clip
0 +——t—t—t—+
2
2
512 gy
Tile Size (KB) - 32 MB
Image

Figure 6: Response Time and Performance Gain over Entire Image Transfer for 32 MB Images

100
)
60
Py
2
0
2
B g
Tile Size (KB) ~ 128 M8
image

—&—1/4 Cip
—=— 1116 Clip
=ty 1/64 Chp
—— 17256 Cip

0
—@—1/4Clip
&0
—a— 1116 Cip
“ —r—1/64 Clip
0 —3¢—1/256 Clip
0
2
8 g
Tile Size (KB) ~ 128 MB
image

Figure 7: Response Time and Performance Gain over Entire Image Transfer for | 28 MB Images

To help understand these results, Figure 8 decomposes the time required to clip 1/ 16" of a 32 MB image
into its three component parts: Seek, Transfer, and Seek Overhead. While both the seek time (Tf+Ti) and
seek overhead (Ts) decrease as the tile size increases, the transfer time (77) increases at a faster rate and
eventually dominates the response time on the right side of the graph. The effect of tape seeks is best
illustrated for tile sizes less than 512 KB where the reduction in seek time, resulting from both fewer and
shorter seeks, offscts the increase in transfer time as the tile size increases.

)
2 —@—Seek (Ti+T)
15 —&- -Transfer (Tr)
10 ~d&- - Overhead (Ts)
! —3¢— Total
O . -
8
128 512
Tile Size (KB) - 32 METRaS2 37768
116 Clip

Figure &: Breakdown of Response Time

469

Based on these figures, for the DLT drive atile size in the region between 32 KB and 512 KB provides the
best perform.. -~ for a vanety of image and clip sizes. In general, using appropriateiy sized tiles provides
between a2 © u-70% improvement compared to fetching the entire image.

3. Simulation Experiments

From the analytical mode! described in Section 2 it is clear that there is a trade-off between decreasing the
seek time and increasing the transfer time as the tile size is increased. The analytical model, however, was
based on a number of simplifying assumptions so that it would be easy to derive and analyze. There may
be conditions for which the results obtained using it are not valid. To venify its accuracy, we developed a
simulation model that we use in this section to explore a broader range of test conditions.

3.1 Simulation Configuration

As with the analytical model, the simulation model focuses on the response time for transferring data from
tape to memory. The simulator consists of three components: a work load generator for generating clip
requests of various sizes, shapes, and locations, an image clipper for generating the sequence of tile ac-
cesses required to satisfy a particular clip operation, and a simulated block-based tertiary storage manager.
Given a request for atile, the tertiary storage manager simulator first converts the tile number to a tape-
block address. Next, it simulates moving the tape head from its current position to the desired tape block
and transferming the block from tape to memory. The tape parameters from Table 2 are used to model a
Quantum DLT-4000 tape drive. Each data point represents the average response time of 1000 clip requests
at different locations. There are several major differences between the analytical and the simulation models.
First, assumptions 3 and 4 from Section 2.1 are relaxed: images no longer must be square, and the clip
shape need not be proportional to the shape of the image. In addition, the tape block size can be different
than the tile size. Thatis, multiple tiles can be packed into a single tape block.

3.2 Analytical Model Verification

To verify the analytical model, using the simulation model we repeated the experiments presented in Fig-
ures 5, 6. and 7.. To sumplify the comparison of the two sets of results, we show the relative differences in
response times from the two models in Figures 9, 10, and 11. The difference is never greater than 4%. In
general, the response times generated by the simulation model are slightly lower than the analytical model
(i.e. a negative difference) for larger tile sizes and slightly higher for extremely small tile sizes. This is due
to the randomness in selecting clip regions. This error margin is acceptable given the number of tests used.
Based on these results, it is clear that the analytical model is quite accurate given the assumptions it is based
on.

°z = —e—1/4 Clp

1 —8—1/16 Cip
2 —&—1/64 Clip
-3 ~—9— 17256 Clip
-4 4 4

2 8

2 4B 52 2048 8192
Tile Size (KB) -- 8 MB Image

Figure 9° Relative Difference berween Analvtical and Simulation Result -- 8 MB Image

470

3

2 i 1/4 Clip
1 -~8—1/16 Clip
0 - = = “_‘-,r,« —a— 1/64 Clip
! —¥— 17256 Clip
2
-3 ———t $ o

2 8
4
128 512
2048 B1R 4ppep
Tile Size (KB) -- 32 MB Image

Figure 10: Relative Difference between Analytical and Simulation Result -- 32 MB Image

3 —e—1/4Clip

f —8— 1/16 Clip
0 ——f— 1/64 Chp
1 —¥e 17256 Clip
-2

-3

2 »
MR e

Tile Size (KB) -- 128 MB Image

Figure 11: Relative Difference berween Analytical and Simulation Result — 128 MB Image

3.3 Tape Block Size vs. Tile Size

As mentioned in Section 3.1, the simulation model allows us to examinc the impact of varying the tle size
and the tape block size independently. Using a tape block smaller than atile will not significantly affcct per-
formance since exch tile is then stored as a set of contiguous tape blocks. On the other hand, when the
size of a tape block is larger than the size of a tile, multiple tiles can be packed into a single tape block.
This can affect response time as fetching one tile is likely to result in reading tiles that are not covered by the
clip operation. Figure 12 contains three curves corresponding to three different Tape Block Size/Tile Size
ratios. Clearly, using a tape bluck size larger than the tile size causes performance to degrade. In gencral,
packing multiple tiles into a single tape block has an effect similar to increasing the tile size. However, since
packing tiles into a bigger tape block is done in row-major order, when too many tiles are packed into a tape
block, the over-all shape of all the tiles in a tape blo~X is no longer rectangular. This irrcgular shape can
furiher degrade perfor.nance. These results indicate that it is the best to use the same tile and tape block size.
Consequently, all subsequent resuits presented in this paper use the same bluck size and tile size.

471

Tiles per Tape Block

[=]
.
r

128 512 8192
Tile Size (KB) — 8 MB Image, 1/16 Clip

Figure 12: Effect of Tape Block Size vs. Tile Size

3.4 Alternative Clip Shapes

One of the assumptions made for the analytical model was that the shapes of the clip region and image had
to be the same. Clip regions with the same area bu® different shapes can also affect performance. To inves-
tigate this effect, we experimented with three different clip shapes: Long, Wide, and Square. Lung is a thin
rectangular shape whose height is four times its width; Wide is the Long shape rotated 90 degrees; Square
is proportional to the image shape (which has been used in all previous experiments). Figure 13 shows the
results from this experiment and illustrates that the different shapes indeed have different response times. It
is interesting to notice that the “Wide” curve is consistently below the “Long™ curve. This is caused by the
row-major linear ordering of tiles on tape. Such a layout helps “Wide” clips reduce the number of tiles that
must be sought over. The * Square” clips is relatively close to the average behavior, and in most cases, is
jus between the * Wide™ and " Long™ curves. However, when the tile size is much larger than the clip size
(e.g. 2,048 KB), the “Square” shape had lower responses than the “ Wide” shape becaus it is less likely to
overlap more than one tile. A key result from this set of experiments is that, regardless of the clip shape,
the best response time occurs when the tile size is between 32 KB and 512 KB.

Clip Shape

—~&— Square
—=—Wide
—a&—Long
—)—Average

N W oa O N

0+ — t — + -+
2 8
x
128 512 2048
Tile Size (KB) -- 8 MB Image, 1/16 Clip

Figure 13: Alternative Clip Shapes, Simulation

472

4. Implementation Results

To verify the results obtained both analytically and through simulation, we next repeat some of the experi-
nents using the following two configurations: an application-level program that accesses raster images di-
rectly on tape, and Paradise -- a DBMS extended to handle data on tape.

4.1 Configuration

The application program is a stand-alone program that is capable of accessing tiled raster image stored on
tape. This corresponds to a typical scientific application accessing a tape-resident data set. Paradise [10] is
an object-relational database system developed at University of Wisconsin — Madison, which is capable of
handling both spatial data (vector-based) and images (raster-based) efficiently. For raster images, Para-
dise combines tiling with compression to maximize performance. In a separate project [6], Paradise was
extended to include support for tertiary storage. Both the application-level program and Paradise share the
same block-based DLT device driver and the raster image clip code. Thus, the amount of time each spends
doing tape 1/Os and clipping raster images in memory is comparable. However, the application program
directly transfers data from tape to user space while Paradise first stages tape blocks on a staging disk. The
experiments using Paradise represents the end-to-end performance in a tertiary database system.

Experimeats in both configurations were conducted on a DEC CELEBRIS XL590 (Pentium 90MHz) with
64 MB memory. The tertiary device used is the Quantum DLT4000 tape dnve. The block-based tape
driver breaks each tape blocks larger than 32 KB into multiple 32 KB physical chunks before performing
the actual tape VO via an ioctl call. This scheme is used to simplify the mapping between physical and
logical block addresses™ A single logical tape block is mapped to multiple contiguous 32 KB physical rec-
ords on tape. For Paradise, all queries were executed with cold buffer pools (for both main memory and
disk cache). Due to0 the high cost of running actual tests, we had to cut down the number of randomly gen-
erated clip shapes from 1000 {used in simulation experimeants) to 20.

4.2 Alternative Clip Shapes -- Application Program

Figure 14 displays the results obtained using the application program for the same set of experiments pre-
sented in Figure 13. Although there are some discrepancies at the ends of the curves, the general trends are
the same. The Wide shape benefits the most from the layout of the tiles and, thus, has consistently lower
response times. The Long shape tends to seek across more tiles than the other cases and hence has the
highest response times. Finally, the Square shape is close to the average case. Note that the response times
for 2 and 8 KB tile sizes are lower than the values predicted by the simulation model. This might be ex-
plained by the DLT tape drive’s intemal read-ahead cache. While no literature was found in the product
manual on how it works, we suspect that tape head does not stop at :he end of the last read but may actually
read ahead to some location further down the track, thus hiding some of the seek latency. With small tile
sizes it is more likely that most of the intermediate seeks can be absoibed by this read-ahead mechanism.
This can also explain why the different clip shapes are closer together with the application-level program.
Another discrepancy between the two sets of results is the difference in absolute times. This is caused by
several factors that are not captured by the simulation model, including post tape processing time (ie. the
clip time in memory), a smaller population of random samples, and the overh2ad of decomposing logical
tape blocks larger than 32 KB into multiple 32 KB physical chunk transfers.

" The maximum system 1/0 buffer size for a single read/wnite request without being translated mto multiple kernel level /O
calls is 63 KB Since cach kemnel-level tape write call generates a separate record on tape it 15 casier to manage smaller
physical chunks and provide a large (variable s1zed) record interface for the higher level

473

8.

; - - Clip Shape
+—n— =%

5 —— T —e— Square

4 —8—Wide

3 —&—Long

2 ~—3-—Average

1

0

3 Y
L v L

-
ES

2 8
2 s s 812
Tile Size (KB) - 1116 Clip, 8 MB Inf352

Figure 14: Alternative Clip Shape, Application Program

4.3 Comparison among all Models

Figure 15 shows the response times obtained for clipping 1/16” of a32 MB Image under all four configu-
rations (Analytical, Simulation. Application and Pasadise)”. Again, all the curves illustrate the same trend:
as the tile size is increased beyond 32 KB the response time increases As explained above, the difference
between the simulation and application-levei results 1s mainly due to the extra overhead of having to break
large tape 1/Os into multiple 32 KB chunks. In addition, it appears that there are additional fixed startup
costs that are not captured by the analvtical or simulation models.

There are a number of causes for the difference between Paradise and the application-level progriam. First,
as a general DBMS engine, Paradise assumes that tape blocks requested by one query might be useful for
other, concurrently exccuting queries Thus, tape blocks are staged first on disk and tken copied into Para-
dise’s buffer pool in main memory on demand. Seccond, Paradise incurs some extra processing overhead
while managing large objects like tiles. Nevertheless, thie impact of tile size on performance is apparent.

36 _
30
P —&—Analytical
2 —#— Simuiation
15 —d&-— Application
12 ~—p— Paradise
0
2 8
e 2 s 2048 8192 35768
Tile Size (KB) - 1/16 Clip, 32 MB
Image

Figure 15 All Configurations

Y The curves for analvtical and simulation maodels are almost the same as discussed 1n Section 32

474

4.5 Processing of Multiple Images

To determine the effect of chpping a large number of images, we next conducted an experiment in which
fif + 32 MB images weic clipped by a fixed region whose arca was 1/16" the size of the image boundary.
Siowe 16 and 17 show the results from this test on the application-level program and Paradise. While both
figures show a small advantage of using a smaller tile size, the most promising resuft is that Paradise’s
performance for this test is within 5-10% of the hand-coded application program.

Tile Size (KB)

j

Figure 16: Time to Clip 1/16"™ of Fiftv 32 MB Images

- Application Figure 17: Time to Clip i/16™ of Fiftv 32 MB Im-

ages -- Purudise

5. Conclusions and Future Work

In this paper we described a simple analytical model to study the impact of tile siz. on the performance of
retieving partial satelite images from tape. Using this analytical model as well as a simulation model and
two actual implementations (Paradise and a hand-coded application program) we demonstrated that the tle
~ s has a complex effect on the cost of executing queries involving clips of partial satellite images stored
on wape. Our results indicate that, for the Quantum DLT 4000 tape drive. atile size between 32 KB an 512
KB provides the best performance for a wide range of image and clip region sizes. These results ar: very
encouraging as smaller ule sizes simplify space management on both the disk cache and buffer pool while
providing good performance.

While this study assumed that the images being processed are stored sequentially on tape, in a companion
study (6] we descnbe a set of new techniques that are capable of reordering tape accesses from complex
object-relational queries in order to satisfy this constraint. Although this paper dealt only with 2D images,
we believe that our results also apply to 3D images as well as arbitrary N-dimensiona! arrays stored on
tape. As dimensionality is increaw»J, the number of seeks and the seck distances can increase exponen-
tially. We expect that in these cases the tile size will have even a larger impact.

References

[1] L. Kobler and J. Berbert, "NASA Earth Observing Sy..»m Data Information System (EOSDIS),”
Prgest of Papers 11" IEEE Symposium on Mass Storage Systcins, Los Alamitos, 1991,

12} Quantum Corporation. “DLT-4000 Product Manual,” 1995.

{3] M. Carey, L. Haas and M Livny. “Tapes Hold Data To~ Challenges of Tuples on Tertiary Store,”
Proceedings of the 1993 SIGMOD Conference, May, 1993

(4] 1. Giy. “MOX. GOX and SCANS: The Way to Measure an Archive,” EOSDEIS VO Experience,
June, 1994.

475

5] S. Sarawagi “Efficient Organization for Mult, dimensional Arrays,” Proceedings of the 1994 IEEE
[Engineenng Conference, February. 1994,

6] J. Yu and D. DeWitt *“Query Pre-Execution and Batching: A Two-t nged Approach to the Efficient
Processing of Tay 2-Resident Dzta Sets.”™ Submitted for publication, February. 1996.

(71 W Emery, T. Kelley.). Doc.er and P. Rotar. “On-line Acer s to Weather Satellite Imagery and Image
Munipulation Software.” Bulletin of the American Meteorvic . -al Society, Janua: -, 1995.

i8] R. Hernng and L. Tefend. “Volume Serving and Medi: M.nagement in a Networked, Distributed Cli-
ent/Server Environment,” Proceedings of the 3% Goddard Conterence on Mass Storage Systems and
Tec hnologies, NASA Con. Publication 3263. 1993.

[9] F. Davis, W_ Farrel, J. Gray, etal. “The Sequota Alternative Architecture Study for EOSDIS,” NASA
Study Report. October, 1994,

{10} D. DeWin, N. Kabra, J. Luo, J. Patel and J. Yu. “Chent Server Paralise,” Proceedings of the 20"
VLDE Conference. Septenber, 19954.

[t1] M. Stoneoraker, J. Frew, K. Gardels and J. Meredith. “The SEQUOIA 2000 Storuge Benchmark,”
Proceedings of the 1993 SIGMOD Conference, May, 1993.

{12} B. Hillyer and Avi Silbertschatz. “On the Modeling and Performance Charactenstics of a Serpentine
Tape Drive,” Proccedings of the 1996 SIGMETRICS Conference, May, 1996.

475

NEXT
DOCUMENT

Evolving Requirements for L,
Magnetic Tape Data Storage Systems

John J. Gniewek
IBM Corporation
9000 S. Rita Road
Tucson, Arnizona 85744
jgniewek @vnet.ibm.com
+1-520-799-2390
Fax: +1-520-799-3665

Introduction

Magnetic tape data storage systems have evolved in an environment where the major
applications have been back-up/restore, disaster recovery, and long term archive.
Coincident with the rapidly improving price-performance of disk storage systems, the prime
requirements for tape storage systems have remained: 1) iow cost per MB, and 2) a data rate
balanced to the remaining system components. Littie emphasis was given to configuring
the technology components to optimize retrieval of the stored data. Emerging new
applications such as network-attached HSM, and digital libraries, place additional cmphasis
and requirements on the retrieval of the stored data. It is therefore desirable to consider the
system to be defined by both STorage And Retrieval System (STARS) requirements. It is
possible to provide comparative performance analyses of different STARS by incorporating
parameters related to A) device characteristics, and B) application characteristics in
combination with queuing theory analysis. Results of these analyses are presented here in
the form of response time as a function of system configuration for two different types of
devices and for a variety of applications.

STARS (STorage And Retrieval Syst-m)

A) Performance Model

Some simplifying assumptions will be necessary to be able to provide comparative
performance analyses for two different tape devices. A list of the required input parameters
for both A) Hardware characterisucs and B) Application characteristics is given in Table
1. The output of the model will be given as an average re.ponse time for various
combinat:ons of these parameters. In order to directly compare device types only, the
assumption is made that both devices are serviced by a robot with identical characteristics,
i.. a fixed mbot average cycle time with no allowance for queuing delays at the robot level.
Device queuing delays are calculated using the methodology in reference [1]. For this
analysis” an M/M/C queue is used.

" The madel and graphical output are developed using MathCad® 6 0 (®-MathSoft...)

471

-

Table |
Input Parameters Required for Performance Model

Hardware C) . Application C]
Device data rate ({MB/sec) (D) Service Requsst Rate (#MHr) (D)

Cartridge Capacity (MB) (o) Object Size (MB) (0)
Recording Density (MB/m) (K) Library Size (MB) (L)
Search/Rewind (M/sec) (V) Random Retrieval Factor (#) (A)
Velocity

Load Time {sec) (LD) Drive Number #) (N)
Unload Time (sec) (ULD)

Robot Cycle Time (sec) (AS)

It is necessary to distinguish between: a) a base cycle time which is a necessary input for
calculating queuing delay times, and b) a base service time which is defined as the response
time in the absence of any queuing delays. Additionally, service times are defined for the
cases where: 1) the required cartridge is already mounted in a drive, or 2) the cartridge is
in a library bin and must be transported to and loaded into a drive. The assumed sequences
of operations for both cycle time and service time are listed in Table 2. These sequences
assume that there is no preemptive unloading of cartridges upon completion of a service
request. It is additionally assumed that at the completion of each service request, there is
arewind to the starting point prior to servicing the next request.

Table 2

Sequence of Operations for Cycle Time and Service Time

Cyele Ti Service Tij
Unmounted Mounted Unmounted Mounted
Unload Cartridge Unload Cartridge
Robot Put Cartridge Robot Put Cartridge
Robot Get Cartridge Robot Get Cartridge
Load Cartridge Load Cartridge
Search Search Search Search
Read Read Read Read

Rewind Rewind

In order to calculate an average system response time, it is necessary to be able to estimate
the probability, P, that the next incoming request will be serviced by an already mounted
cariridgc as opposed to requiring a robotic Put and Get operation. The expression given in
Equation (1) is used to estimate this probability as a function of the library size, the
cartridge capacity, the number of drives in the robotic system, and an application dependent
adjustable parameter, A, which characterizes the degree to which the requested objects are
randomized within the library cartridges [2].

478

P feem T

where: A = application dependent random factor
C = cartridge capacity (MB)
L. = library size (MB)
N = number of drives in hbrary
P = probability of next request being serviced by a mounted volume

Figure | shows P as a function of the cumulative percent of volumes in the library ordered
by activity from highest to lowest. Equation (1) is derived cmpirically. however its
relevance to a statistical analysis is covered in refercnce [2].

HIT RATE PROBABILITY

HIT RATE PROBABILITY (%)

-

5
|
l
{
f
lo] y " n i " i i " —
0 10 20 30 40 60 60 70 80 o0 100

LIBRARY CAPACITY MOUNTED (%)

Figure 1. Prabability, P, of next request being serviced by a mounted volume as a
function of percent of library capacity mounted. Plotted from Equation
(1)for A =1.0,1.2, 1.6, 2.2, and 3.2.

The output of the model is presented in terms of an average System Response Time (SRT).
(to complete the service request) as a function of various combinations of the other input
parameters. Intermediate output parameters include, in addition to P, an average cycle
time, CT, (appropriately weighted by the fraction of requests serviced by mounted and
unmounted volumes), a drive utilization factor, U, and an average device queuing delay.

QD.

The expression for the queuing delay time for multiple servers in an M/M/C queue is
adapted from reference [3] as:

479

v - P,

oD =CTrf ————=
N' N(L-UY

(2

N N-1 ' B
where P = [N, Oy (2a)
CONQ-D o it
The M/M/C queue designates an expone..ial interarrival time request distribution and an

exponential service time distribution with means designated by the chosen values for the
input parameters.

Average cycle times, utilization factors, and service times are calculated in a straight

forward manner from the parameters designated in Tables 2 and 3. The average system
response time is the sum of the average service time and the average queuing delay time.

Table 3

Hardware Characteristics of Two Prototype Devices
Paran::ter Device I Device Il
Data Rate (D) (MB/sec) 9 2.2
Cartridge Capacity (C) (MB) 10000 5000
Recording Density (K) (MB/m) 34 34
Velocity (V) (m/sec) 5 10°
Load Time (LD) (sec) 15 2
Unload Time (ULD)(sec) 11 2
Robot Cycle Time (AS) (sec) fixed™ fixed"™

* Actual Search Velocity 5 m/sec. Midpoint cartridge load translates this parameter
into an effective 10 m/sec consistent with the model formulation.
" Assumed common robotic device to highlight contrasts in device characteristics. See
Figures for values used.

B) Hardware Characterjstics

A description of two different types of prototype devices that could be developed from
advanced technology recording components has previously been presented [4]. Their
characteristics are designed to complement each other for different application
requirements. For the purpose of this performance analysis, devices are assumed with
characteristics similar to those previously described. The specific values used in the
comparative performance analysis are given in Table 3. STARS are defined by specifying:

480

a) a robot systen with a fixed cycle time™, b) the type of device (1 or 1) defined in Table
3, ¢) the number of devices in the library system, and d) the library capacity (in MB).

Analysis

In addition to the large number of STARS hardware variables, the analysis must
accommodate the application variables; 1, the service request rate, O, the object size being
retrieved, and A, the random retrieval factor. In the first analysis, the system response time
is calculated as a function of the service request rate for both types of devices and with the
number of drives as an independent parameter. All other parameters are fixed. This is done
for both a large object size, 300 MB, and a small object size, 1 MB, to highlight the
differcnces in device characteristics.

A helpful way to assess appropriate operating domains for the different types of devices is
to plot the average system response time as isochrons over the domain space of object size,
O, and service request rate, I, with the remaining parameters fixed. Most of the calculated
results are presented in this format. System configuration variables such as the number of
drives in the library represent another dimension and these data can be represented
parametrically in separate, individual plots.

Results

A. System Response Time as a Function of Reques! Rate

Figures 2A and 2B show the system response time as a function of request rate for the two
different types of devices in system configurations of |, 2, or 4 drives, and for a library
capacity of 10 TB, with a value of the randomness factor, A, equal to 3.2 Figure 2A plots
results for a | MB object size and Figure 2B is calculated for 0 = 300 MB. Figures 2C and
2D repeat these calculations with all values the same except the library capacity is set to
0.5 TB. This has the effect of modifying the mounted/unmounted service request ratio via
the probability function given in Figure 1. The effect this has on system respot 2 time is
a complex function of device characteristics, robotic cycle time and the specific application
parameters. The data in Figure 2 illustratr one possible scenario. In general the response
time is improved at smaller library capacities as a result of a higher probability of the
request being satisfied by an already mounted volume, thereby eliminating the need to
invoke a robotic move to satisfy that parameter request.

13

The performance modc: presented here does not provide for robotic queuing delays in order to
emphasize the different charactenistics of the two types of devices

481

AVERAGE SYSTEM RESPONSE TIME
300 - TYPEI
—~ X
Q ' :
% A=3.2.0=1.0 !
L2 AS=10, L=10E6 -
w
= .
Ezoo 2 o
2 TYPE i
o .
5 100 - A
(O] A
é 'j)). -A’/‘— & 8
N AN 4
% Lt 3RO D SRR ??E'—'{_{S D000 04H - IO
% 100 200 300
REQUEST RATE (NUMBER / HOUR) 2A
Figure 2A. Average system response time, SRT, as a funcuon of service request rate

(#/hour), for N = 1, 2, 4 drives of Device Type I and Device Type Il.
A =3.2, AS = 10 seconds, L =10 TB,O =1 MB.

AVERAGE SYSTEM RESPONSE TIME
4 4
S A=3.2. O=300
% AS=10, L=10E8
<
= TYPE | = SOLID
7] TYPE Il = OPEN
&
7]
ul
o
wJ
=
£ |
%0 20 40 60 80 100 120 140
REQUEST RATE (NUMBER / HOUR) ?8
Figure 2B. Average system response time, SRT, as a functicn of service request rate

(#Mour), for N = 1, 2, 4 drives of Device Type I and Device Type I1.
A = 3.2, AS = 10 seconds, L = 10 TB, O = 300 MB.

482

AVERAGE SYSTEM RESPONSE TIME
1 2 1 4 2

k-

A=3.2 0=1.0 '
AS=10, L=0.5E6 |

TYPE | = SOLID
TYPE Il = OPEN

3

AVERAGE RESPONSE TIME (SEC.)

100 .
i a
o ~ Pa)
' X A 4
Frede 8 B p 65 DDA DL e e - e -
0 o 100 200 300
REQUEST RATE (NUMBER / HOUR) 2C

Figure 2C. Average system response time, SRT, as a function of service request rate
(#/hour), for N = 1, 2, 4 drives of Device Type 1 and Device Type II.
A =3.2,AS =10seconds, L =0.5TB, 0 =1MB.

AVERAGE SYSTEM RESPONSE TIME
4

, A=3.2, O=300
i AS=10, L=0.5E6

TYPE | = SOLID
TYPE Ul = OPEN

AVERAGE.RESPONSE TIME (SEC))

1 A 4

80 80 100 120 140
REQUEST RATE (NUMBER / HOUR) 20

Figure 2D. Average system response time, SRT, as a function of service request rate
(#/hour), for N = 1, 2, 4 drives of Device Type | and Device Type 1.
A = 3.2, AS = 10 seconds, 1. = 0.5 TB, O = 300 MB.

483

It is readily apparent from the data presented in Figure 2 that Device Type I provides
superior performance (on a per drive basis) for those applications requiring large object
sizes and modest request rates. Conversely, Device Type Il excels for those applications
characterized by modest object sizes and high request rates. In order to get a better
perspective of the preferred operating domain for these two different types of devices, the
data is next presented as a series of isochrons (lines of constant system response time) over
the domain space of object size X request rate. The information is presented with number
of drives as one of the parameters thus resulting in performance comparisons on a "per
drive” basis.

B. System Response Time Isochrons

Figures 3A and 3B display isochrons of average system response time for Device Types |
and II respectively. These figures display the operational range of object size (MB) X
request rate (#/hour) that can be satisfied within 60 seconds, 90 seconds, or 120 seconds, for
a system configuration of 4 drives, a library capacity of 10 TB, and a random retrieval
factor, A= 3.2. In Figure 3B, as a result of the faster response times (for small to medium
object sizes) of the Type I Device, an isochron at 30 seconds is also shown. Figure 4 shows
only the 90 second isochron for both types of devices in overlay fashion to better illustrate
the operational domain where each type of device excels, as well as the range of overlap.

OBJECT SIZE-REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS
300
DEVICE TYPE |
A=3 2 L=10E6
o N=4,6K AS=10
-3
ot 200 |
N
w
5
ul
-
8 100 -
% .
. L)
\ <«
. o \\ . ,
0 100 200 300
REQUEST RATE (NUMBER / HOUR) 3A

Figure 3A. Isochrons of average system response time, SRT, in seconds in the
operating domain of object size (MB) X request rate (#/hour).
A=32,N=4,L=10TB, AS = 10 seconds. Device Type 1.

4384

300

OBJECT SIZE--REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS

DEVICE TYPE |
A=3.2, L=10EE
N=4, AS=10

OBJECT SIZE (MB)

REQUEST RATE (NUMBER /HOUR) 3B

Figure 3B.

Isochrons of average system response time, SRT, in seconds in the

operating domain of object size (MB) X request rate (#/hour).

A=32,N=4,L =10TB, AS = 10 seconds. Device Type II.

OBJECT SIZE (MB)

OBJECT SIZE--REQUEST RATE DOMAIN
NINETY SECOND ISOCHRON

DEVICE TYPE { A=3.2, L=10E6
N=4,6 AS=10

DEVICE TYPE Ji

) oo
O 'y \ A A J
0 100 200 300
REQUEST RATE (NUMBER / HOUR) 4
Figure 4. Ninety second isochron of average system response time in the operating

domain of object size (MB) X request rate (#/hour). Overlay of Device
Type I and Device Type I1. Same conditions as defined in Figure 3.

485

Discussion

These analyses provide a means of quantifying expected performance for many variables
characterizing different types of devices, different system configurations, and different
application parameters. It is obvious that a higher data rate device will perform better than
a lower data rate device for large object sizes. However, because of the non-linear nature
of the queuing delays, it is not obvious where the crossovers occur in the operating space
of object size X request rate. A comparison of the data in Figures 3A and 3B illustrates that
for object sizes up to slightly in excess of 100 MB, the Type Il device equals or exceeds the
performance of the Type I device for all values of the request rate. At 150 MB, the Typ-
Il device becomes superior only for request rates greater than approximately 100 per ho:
for the configurations assumed. In order to convert this type of analysis to a price-
performance analysis (rather than on a per drive basis) it would be necessary to first convert
the configurations to equal dollar configurations and then compare performance over the
operational space of interest for the given application requirements.

The performance results are specific for the defined assumptions made for the cycle time
and service time components. Performance enhancements via software control algorithms
are possible. For example, the algorithm used in this analysis assumes that following a read
operation, the device rewinds the tape to the beginning of the tape and the tape remains
mounted until a service request arrives that requires a new cartridge mount whereupon a
drive is unloaded. If a request arrives for an object on a cartridge that is mounted, the drive
searches from the beginning of tape . the new object location without invoking a robotic
action. Depending upon the application, two possible alternative cycle sequences may
provide better performance. In one situation it may be preferable to search for an incoming
request from the stop point of reading the previous request rather than automatically
rewinding to the beginning of tape. This could result in shorter average search distances.
Another scenario could provide preemptive drive unloads [5] which might shorten robotic
service times under some application conditions. An early pre-analysis of the specific use
conditions would permit "tuning” the system for optimized performance.

Cartridge Capacity Considerations

In passive tape storage applications that very infrequently retrieve stored data objects, the
emphasis has been on higher data rates and higher cartridge capacity. Increzces in capacity
can be achieved by either an increase in areal density or by way of a longer length, thinner
tape. The K value, given in MB/M, is reflective of the areal density capabilit’ for a given
tape width. For a fixed value of K, capacity is linearly dependent upon tape . :ngth, which
in turn affects search and rewind times. An analysis of the average system response time
as a function of cartridge capacity (i.e. lengtn) is shown in Figures 5 and 6 as 1sochrons of
average response time over the domain space of request rate X capacity for the fixed
conditions listed.

Device Type Il is unigue in its design for type storage devices to be able to economically

provide solutions for active applications such as HSM and digital libraries. However, for
wide acceptance, it must also be capable of meeting the needs of the passive applications.

486

Hence, it was necessary to provide a carefully considered balance between capacity and
response time under multi-user loaded conditions. The performance target was set to be in
the range of 15-30 second average response time for request rates of a few hundred per hour
and with an economicai number of devices. There are many variables that affect the design
space over which these objectives may be achieved. These include the randomization
factor (A). the library size, the robot cycle time, and the size of the object being retrieved
Using the technology recording density (K = 34) and the design of Device Type 1, a
capacity 1n the range of 5-10 GB provid:s a reasor.able balance to meet the wide range of
application characteristics. This is illustrated in Figures 5 and 6. Thesc analyses arc
analogous to assessments of the trade-offs made between disk storage capacity and number
of actuator arms. The result has been smaller physical disk sizes as the technology
advanced to provide higher recording densities.

Figure 5A presents 20, 25, and 30 second isochrons over the domain space of request rate
X cartridge capacity for the system parameters stated. Of note, randomization factor, A,
is set at 2.2, the accessor cycle time = 15 seconds and the number of drives = 2. For a 5 GB
cartridge capacity an average responsc lime of < 25 seconds is maintained up to
approximately 100 requests per hour. Figure 5B illustrates the improved performance and
the enlarged acceptable operating domain resulting from the addition of a third drive.
Alternatively, improvements may be obtained by using a faster accessor. The results
obtained with an accessor cycle time, AS of 10 seconds (and with 2 drives), is shown in
Figure 5C. Figure 6A illustrates the effect (with 3 drives and AS = 15 seconds) of an
application tnat has a highly non-random recall pattern (A = 3.2). This results in a high 'hit’

CAPACITY--REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS

20 -
18 DEVICE TYPE I
.2, 0=1.0, L=3E
18 A=22,0=10 3ES
- N=2 AS=15

CAPACITY (GB)
o 8 s

—d

0 100 ‘ 200 300
REQUEST RATE (NUMBER / HOUR) 6A

Figure SA. Isochrons of average system response time, SRT, (seconds) in the design
space of request rate X capacity (as determined by tape length) for
Device Type I1. A=2.2, 0=1 MB, L=3x10° MB, N=2, AS=15 seconds.

487

CAPACITY--REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS
20 -
. DEVICE TYPE Il
: A=2.2, 0=1.0, L=3E6
er N=3, AS=15
~ 1
8l
E 10 ——
%3 g
6 -
4 ' »\\\ Wo ——
- \ T 2s0 ~
a:
0 L A " “::'22'7 ;
(o] 100 200 300
REQUEST RATE (NUMBER / HOUR) 5B
Figure SB. Isochrons of average system response time, SRT, (seconds) in the design
space of request rate X capacity (as determined by tape length) for
Device Type II. A=2.2,0=1 MB, L=3 x 10° MB, N=3, AS=15 seconds.
CAPACITY-REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS
20 -
18 - DEVICE TYPE Il
. A=2.2, 0=1.0, L=3ES
18 -

CAPACITY (GB)
o N &

N=2 AS=10

\‘ T W
~1 T Y00 — T 2‘57:
N 50 - N .
100 200 300
REQUEST RATE (NUMBER / HOUR) 5C

Figure SC.

Isochrons of average system response time, SRT, (seconds) in the design
space of request rate X capacity (as determined by tape length) for
Device Typ. I1. A=2.2, 0=1 MB, L=3x10° MB, N=2, AS=10 seconds.

488

CAPACITY—-REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ' OCHRONS

20 ~

w8l DEVICE TYPE Ui
W A=3.2, 0=1.0, L=3ES

16 { N=3, AS=15

- -
N b
~T Y

CAPACITY (GB)
® 3

S 350\3.%).
4+ M0
2 I
G q— 150 " . 4
4] 100 200 300
REQUEST RATE (NUMBER / HOUR) 6A

Figure 6A. Isochrons of average system response time (seconds) in the ’esign space
of request rate X capacity (as determined by increased tape length) for
Device Type II. N=3, AS=15 seconds, O=1 MB, L=3x19° MB. A=3.2.

CAPACITY--REQUEST RATE DOMAIN
RESPONSE TIME (SEC.) ISOCHRONS

DEVICE TYPE I
Ax1.0, 0=1.0, L=3ES5

N=3, AS=15

~ - N
» @ ©
T

— — -
Q N b
|]

CAPACITY (GB)

/!

i
/

— \
2! \\E:\
L-- 200 : N Bo —.
4]
0 100 200 300

REQUEST RATE { NUMBER / HOUR) 6B

Figure 6B. lsochrons of average system response time (seconds) in the desigr space
of request rate X capacity (as determined by increased tape leng!i) for
Device Type [l. N=3, AS=15 seconds, O=1 MB, L=3x10° MB. A=1.0.

489

rate to mounted cartridges and hence performance improvement as a result of fewer
required robot movements, and load-unload cycles. Figure 6B shows the other extreme of
a totally random retrieval pattern (A=1) for the same system configuration parameters.
Figures 6A and 6B should be compared to Figure 5B to see the effect of the application
retricval pattern on the response time for an otherwise fixed set of system parameters.
Clearly, optimizing for one application will result in sub-optimization for other
applications. The values chosen for the parameters for Device Type Il in Table 3 provide
a good balance, are achievable with current technology, and provide a basis for possible
future technology enhancements.

Conclusions

The type of analysis presented here may be useful to the application engineer in comparing
different STARS as to suitability for different application requirements. Likewise, this
analysis has been used by developers to guide the development of device characteristics to
meet existing or anticipated application requirements. The diversity of applications
precludes the possibility of a single device doing all jobs equally well. A comparison of the
preferred operating domains for two different types of devices which have been developed
from a common advanced recording technology has been presented.

490

r9

References

. JJ. Gniewek, "Application of Queuing Theory to Performance Analysis of Automated

Removable Media Storage Subsystem Response Time - Bounding the Problem,”
submitted for publication in IBM Journal of Research and Development.

J.J. Gniewelk, "Factors Affecting Response Time Performance of Removable Media
Storage Subsystems.” Internal IBM Tucson Technical Report (1996). (This report is
available from the author by e-mail request).

J. White, J. Schmidt, and G. Bennett, "Analysis of Queuing Systems," Academic Press,
New York (1975).

J.J. Gniewek and S.M. Vogel, "Influence of Technology on Magnetic Tape Storage
Device Characteristics,” NASA Conference Publication 3295, Fourth NASA Goddard
Conference on Mass Storage Subsystems and Technologies, 237-251 (March, 1995).

J.C. Hartung, et. al., "Preemptive Demount in a.. Automated Storage Library,” U.S.
Patent 5,239,650, issued 8/24/1993.

491

NEXT
DOCUMENT

Optimizing Input/Output Using Adaptive File System Policies’

Tara M. Madhyastha, Christopher L. Elford, Daniel A. Reed
Department of Computer Science
University of Hlinois
Urbana, Illinois 61801
=-mail: tara@cs.ui.edu

Abstract

Parallel input/output characterization studies and experimeats with flexible resource
management algorithms indicate that adaptivity is crucial to ile system performance. In
this paper we propose an automatic technique for selecting anc. refining file system policies
based on application access patterns and execution environment. An automatic
classification framework allows the file system to select appropriate caching and
prefetching policies, while performance sensors provide feedback used to tune policy
parameters for the specific system environment. To illustrate the potential performance
improvements possible using adaptive file system policies, we present results from
experiments involving classification-based and performance-based steering.

1. Introduction

Input/output performance is the primary performance bottleneck of an important class of
scientific applications (e.g., global climate modeling and satellite image processing).
Moreover, input/output characterization studies such as Crandall [1] and Smirni [2] have
revealed that parallel applications often have complex, irregular input/output access patterns
for which existing file systems are not well optimized. Experience has shown that a few
static file system policies are unlikely to bridge the growing gap between input/output and
computation performance. In this paper we propose an automatic technique for selecting
and refining file system policies based on application access patterns and execution
environment. Knowledge of the input/output access pattern allows the file system to select
appropriate caching and prefetching policies while the specific execution environment
determines what policy refinements are necessary to further improve pertormance. For
example, a sequential access pattern might benefit from sequential prefetching. The
available memory and access latencies determine the quantity of data that :rhould be
prefetched. By being responsive to both application demands and system environment, this
approach can provide better performance than a single static file system policy.

Adaptive file system policy controls rely on continuously monitoring access patterns and
file system performance. We obtain a qualitative access pattern classification either through
automatic analysis of the input/output request stream or via user-supplied hints. We also

* Supported in part by the National Science Foundation under grant NSF ASC 92-12369, by the
National Acronautics and Space Administration under NASA Contracts NGT-51023. NAG-1-613. and
USRA 5555-22 and by the Advanced Research Projects Agency under ARPA contracts DAVT63-91-C-
0029, DABT63-93-C-0040 and DABT63-94-C-0049

493

continuously monitor file system performance sensors (e.g., cache hit ratios, access
latencies, and request queue lengths). The values of these sensors, together with the access
pattern, are used to select and tune specific file system policies. For example, the file
system can enable prefetching when the access pattern is sequential, using the interaccess
delays determine how much data to prefetch. Updated performance sensor values or
changing access pattern classification may result in additional refinements to file system
policies.

The remainder of this paper is organized as follows. In B2 we give a high-level overview of
the adaptive file system infrastructure. Validation of these concepts requires an
experimental framework; we have implemented adaptive file system policies within a
portable, user-level file system called the Portable Parallel File System (PPFS) Huber [3],
described in B3. Our system has two major components; in 84 we discuss how one
automatically classifies user access patterns and uses this information to select file system
policies. In B85S we describe how to use an input/output performance summary generated
from sensor values to select file system policies and parameters that should be modified to
improve performance. Finally, B6-87 place this work in context, summarize our results,
<nd outline directions for future research.

2. Adaptive Steering

Given the natural variation in input/output access patterns, it is unlikely that one, static,
system-wide set of file system pnlicies will suffice to provide good performance for a
reasonable range of applications. Even in a configurable environment, a priori
identification of effective file system policies is difficult because application access patterns
are sometimes data dependent or simply unknown. Furthermore, input/output
requirements are a complex function of the interaction between system software and
executing applications and may change unpredictably during program execution. We
believe that integration of dynamic performance instrumentation and automatic access
patten classification with configurable, malleable resource management algorithms
provides a solution to this performance optimization conundrum. Below, we describe the
two major components of this approach.

2.1. Classification-Based Policy Selection

Parallel file system research such as Patterson [4], Kotz (5], Krieger [6], and Grimshaw
[7] has demonstrated the importance of tuning file system policies (e.g., caching,
prefetching, writeback) to application access patterns. For example, access pattern
information can be used to guide prefetching, small input/output requests can be aggregated
and large requests can be streamed.

One intuitive way to provide the file system with access pattern information is via user

supplied hints, or qualitative access pattern descriptions, for each parallel file.
Unfortunately, this approach requires ongoing programmer effort to reconcile the hints

494

with code evolution. Inaccurate hints can cause performance problems if the file system
selects policies that are unsuitable for the actual access pattern.

Our solution to this dilemma is to automatically classify access patterns during program
execution. This approach requires no programmer intervention and is robust enough to
handlc dynamically changing or data-dependent access patterns. A classifier module
observes the application-level access stream and generates qualitative descriptions. These
descriptions, combined with quantitative input/output statistics, are used to select and tune
file system policies according to a system-dependent algorithm. Hints can be used in
conjunction with this approach to provide access pattern information that cannot be intuited
from the access stream (¢.g., collective input/output).

2.2. Performance-Based Policy Selection

Although application access pattern information is a prerequisite for selecting appropriate
file system policies, input/output performance ultimately determines the success of a
particular policy choice. Extrinsic (external) input/output phases that occur when other
applications compete for shared resources are equally important to file system policy
selection, yet are not evident from application access patterns alone. Using a basic feedback
system as a model, we can frame paralle] file system policy optimization as a dynamic
steering problem that tracks performance to refine file system policy selection. This type
of computational steering framework has proven useful in other contexts (e.g. Vetter [8),
Wood [9], Gergeleit [10], and Gu [11].)

In our dynamic steering framework, we monitor performance sensors that encapsulate the
performance of critical file system features, consult access pattern dependent policy
selectors that map changes in input/output performance to potential policy changes, and
invoke system actuators to effect these policy changes. The resulting performance sensor
metrics reflect the influence of our policy reconfiguration. When coupled with autcmatic
access pattern detection, this closed loop steering infrastructure can adapt file system
policies to match application access patterns and then tune these policies to the dynamic
availability of system resources.

3 Portable Parallel File System (PPFS)

PPFS is a portable input/output library designed as an extensible testbed for file system
policies {3]. A rich interface for application control of data placement and file system
policies makes it exceptionally well-suited for our experiments. Below we describe the
PPFS design and extensions that facilitate adaptive file system policy experiments.

495

3.1. PPFS Design

Input/Output Server(s)
D 5
Pre! ~ache Cache
Server Server
Metadata Server(s)
Cache Pre 1 ;C.a.sl.l.ej 1 P C‘Che
C Client C Client (Client
User User soe User
Code Code Code

Applicauvn Client(s)

Figure 1: Basic PPFS Design

Figure 1 shows the PPFS components and their interactions. Application clients initiate
inpet/output via invocation of PPFS interface functions. To open a file, the PPFS library
first contacts the metadata server, which loads or create. information about the file layout
on remote disk servers (input/output nodes). With this information, the application is able
to issue input/output requests and specify caching and prefetching policies for all levels of
the system. Clients either satisfy the requests or forward them to servers (abstractions of
input/output devices). Clients and servers each have their own caches and prefetch engines.
All “physical” input/output is performed through underlying UNTX file systems on each
PPFS server.

In the PPFS input/output model, files are accessed by either fixed or variable length
records, and the PPFS library has an extensible set of interfaces for specifying file
distributions, expressing input/output parallelism, and tuning file system policies. For
example, the user can specify how file records are distributed across input/output nodes,
how and where they are cached, and when and where prefetch operations should be
initiated.

496

3.2. PPFS Extensions

The original PPFS interface provides the application with a rich set of manual file svstem
policy controls and structured data acce s functions, but the rules guiding their use arc ad
hoc. 1deally, the file system should automatically infer appropriate policies from low-level
application access patterns, lessening the application programming burden and the
likelihood of user misconfiguration. Dynamic performance data should be used to verify
and refine these policy decisions. Through automatic access pattern classification, used to
select file system policies, and performance-based policy refinement, we automate file
system policy control. This has motivated two basic extensions to the base PPFS design:
support for automatic access pattern classification and automatic policy refinement based
on monitoring input/output performance.

To I/O servers

Policy configuration

|— Tciﬂ’cy Tl Access roS— ==
L Selection |~ patterns Cla_lssnfi_er_!
-L Access statistics }
|

/O Statistics |

iyingespmidehiiel’

File accesses

F‘ile
PPES Interface
Code

Figure 2: PPFS Classification and Policy Selection Extension

We have replaced manual PPFS file system controls in our extension by an adaptive access
pattern classification and file system policy sclection mechanism. During program
execution, an input/output statistics module monitors the file access stream (each access is
represcnted as a byte offset, read or write, and request size) and computes the statistics
nceded by the classifier module. PPFS uses the classification to select and tune prefetching
and caching policies. Figure 2 illustrates the interaction of the classification extensions with
the original PPFS components.

497

(Sensor
Metnics
I T Selector
"Cache Table
Pre iaasaentl
Server
Policy
Actuators Sensor
Metrics
ey v Local
“iPrej. Cache Cache Selector
lisaasaail Miaassantt Table
Client Client
Policy
» Pohcy Actuators
Sensor Actuators
| Metrics
Global
Selector
Table

Figure 3: PPFS Performance Monitoring and Steering Extension

To refine policy selections using performance data, we instrumented the system
components to periodically provide ensor metrics and created sensor-driven selector tables
to automate invocation of the same native PPFS policy controls that a PPFS user could
invoke manually. Figure 3 shows how our performance based policy selection extension
interacts with the PPFS. Dynamically computed sensor metrics (e.g., input/output queue
lengths, cache hit ratios, inter-request latencies) are routed to local and global policy selector
tables, where they index appropriate file system policies and parameters for the system
environment.

The local policy selector can only change local policies. For example, a client selector table
may decide to increase the client file cache space and the number of records to prefetch
ahead. It cannot change file system policies on other client nodes or on the PPFS servers.
As shown in Figure 3, sensor metrics are also routed to a global selector mechanism that
can select policy parameters for other nodes. For example, if the write throughput visible
to client nodes for large writes drops below a certain threshold, the clients may elect to
disable caching, and stream data directly to the PPFS servers. Rather than waiting for the
individual server metrics and selector tables to disable server caching and stream data to
disks, the global selector mechanism detects this input/output phase shift in the clients and
invokes the policy change on the servers.

498

4. Automatic Classification and Pelicy Selection

As described in 83, we have replaced the manual file system controls in PPFS with an
adaptive access pattern classification and policy selection mechanism. Below we describe
in greater detail our classification and policy control methodology.

A file access pattern classification is useful if it describes the input/output features that are
most relevant to file system performance; it need not be perfectly accurate. For example,
one might classify an input/output pattern as “sequential and write only” even if there are
occasional small file seeks and reads -- this would suffice to correctly choose a sequential
pretetching policy. Such a qualitative description is difficult to obtain based on heuristics
alone. Instead, one needs a general classification methodology capable of learning from
examples.

As a first step toward adaptive file system policies, we have implemented automatic access
classification to select file system policies, adapting to application requirements. This is
only half of the complete system; after making policy selections we rely upon performance
sensor data to refine policy parameters, adapting to the total system environment.
Performance-bascd steering is the subjeci of B35.

4.1. Classification Methodology

Within a parallel appiication, file input/output access patterns can be observed at two levels.
The first is at the local (e.g., per thread) level, and the second is at the global (e.g., per
parallel program) level. For cxample, a paraliel file might be distributed across the threads
of a parallel program in such a way that cach thrcad appears to be accessing the file locally
in strides, but the interleaved access stream is globally seqi..ntial. Global classifications are
formed from local classifications and input/output statistics. In B4.1.1 we describe our
access pattern classification approach. In 84.1.2 we illustrate how global classification
works in a parallel application.

4.1.1. Access Pattern Classification

To accommodate a variety of underlying file structures and layouts, we describe access
pattern classifications assuming a byte stream file representation. File accesses are made
using UNIX style read, write, and seek operations, and file access patterns are determined
from this representation. Thus, an input/output trace of file accesses may be represented as
a stream of tuples of the form

(bvie offset, request size, read | write)

49¢9

Sequentiality
)
Sequential’
1-D Strided,
2-D Strided ’

Nondecreasing |

i

Variably Strided

f
:
t

o @ o Read/Write

Uniform

Variable
Requ'ést Sizes

Figure 4: Access Pattern Space

Patterns observed in each of the time-varying values of the tuple components form a three
dimensional access pattern space. Figure 4 shows certain categories along each axis that
can be used to influence file system policy selection and label all points in the access space.
Additional categories can be adued as necessary to each axis to further refine the access
pattern space.

Many techniques can be used to classify and identify observed access patterns within the
space shown in Figure 4. Our approach is to train a feed-forward artificial neural network
as in Hinton [12] to classify patterns. Although neural networks are expensive to train
initially, once training is complete, classification is very efficient. To t1ain the neural
network, we represent the access pattern in a compact, normalized form by computing
input/output statist:~s on a small fixed number of accesses, called the classification
window. For examiple, representative statistics might be the number of unique read request
size«. or a transition matrix of the probabilities that one type of request (read/write) will
follow the other.

Table 1: Input/Outp - Trace Features

ead Only Write Only Read/Write Nonupdate
Sequentiality | Sequential | 1.p Strided 2-D Strided Variably Strided
Request Sizes I Uniform Variable

Table | shows the features recognized by our trained neural network. These features
correspond directly to planes or regions within the space snown in Figure 4. The neural

500

network selects onc and only onc feature within each category; for example, a set of
accesses cannot be both read only and write only. Neural networks ar~ inherently
imprecise, allowing us to train a network to identify patterns that are *‘close” to a well-
defined pattern in a more general way than specifying heuristics. For example, a pattern
might be treated as read-only if there is only one small write among very large reads, but
read/write if the single write is the same size as the reads. This allows us to train the file
system to classify new access patterns.

4.1.2. Global Access Pattern Classification

Local access pattern classification is only part of a larger classification problem. Local
classifications are made per parallel program thread; however, the local acc 'ss natterns
withir a parallel program merge during execution, creating a global access pauer- Gilobal
knowledge is especially important for tuning file system policies. For example, if all
processors access a single file sequentially, one could poteniially improve performance by
employing a caching policy that does not evict a cached block until every processor has
read it.

Our global classification infrastructure is based on an access pattern algebra. We combine
local classifications and other local information to make global classificati~ns. For
example, if ail local access patterns are read only, the global access pattern is read only. The
number of processors contributing to the global access pattern is called the cardinality of
the classification. Generally, we attempt to make global classifications with cardinality p,
where p is the number of processors involved in the global input/output. However, a global
classification involving a subsct of the these processors is still useful for policy selection.
A partial global classification may even be preferable, if #t more accurately represents the
temporal characteristics of the global access pattern.

Global access pattern classification cannot be useful for influencing file system policies
unless we recognize common global access patterns in time to effect policy changes. To
demonstrate that this is feasible, we have examined parailel applications from the Scalable
Input/Output (S10) application suite [1,2]. These applications exhibit a variety of global
access patterns, including global sequential, partitioned sequential (processors sequentially
access disjoint partitions), #nd interleaved sequential (individual strided access patterns are
globally interleaved). The patterns are primarily read-only or write-only with regular and
irregular request sizes. All of these patterns can be recognized by our classification
infrastructure.

One specific application area we have examined is computational fluid dynamics. PRISM
is a parallel implementation of a 3-D numerical simulation of the Navier-.:okes equations
from Henderson [13,14]. The parallelization is implemented by apportioning slides of the
peniodic domain to the processors, with a combination of spectral elements and Fourier
modes used to investigate the dynamics and transport properties of turbulent flow.

Figure 5 shows a file access timeline for PRISM on a 64 processor Intel Paragon XP/S
running OSF/1 version 1.4. This code exhibits three distinct input/output phases. During

501

the first phase, every prowessor reads three initialization files (m16.rst, ml6.rea and
ml6.mor). Each file is accessed with a global sequential access pattern; ml6.rst is also
accessed with an interleaved sequential access pattern. In the second input/output phase,
node zeio performs input/output on behalf of all the nodes, writing checkpoints and data
(access o files m16.Rstat, m16.Qstat, m16.Vstat, ml6.mea and ml6.his). In the final
phase, the resuit file is written to disk by all processors in an interlcaved sequential access
pattern m16.11d. Phases two and three occur iteratively throughout program execution.

When accesses are adjacent and very small, local classification windows (the time to make
ten input/output accesses) are short, and we must observe more windows to detect overlap
among processors and global behavior. For example, Figure Sa and Figure Sb show local
classification times for a globally sequentially accessed initialization file (m16.cea). The
reads are very small (most are less than 50 bytes) and we reclassify the pattern every ten
accesses. We can make a global sequential classification when sequential access patterns
with overlapping bytes have been detected on every processor. Despite itial startup
asynchronicity, the slowest processor (number 31 completes its tenth access to this file at
7.79 seconds. Because this initialization input/output phase accounts for approximately
'25 seconds f execution time. adapting file system policies to the access pattern is
fundamental to improving performance.

1 T T H T T T
ml6.Rstat | © o] o] ¢ Led —
ml6.Qstat |- o o < o Yo
ml6.Vsiat |- e o o o o —~
(5]
gmlﬁmea - -
Z
2 mile6.his [N -
[+
ml6.fid - o4 Lo < e o -
ml6.mor & -
ml6.rst -
ml6.rea 1 l i —L L 1 L

0 1000 2000 3000 4000 5000 6000 7000 8000
Execution Time (seconds)

Figure 5: PRISM: File Access Timeline

502

- 70 1 T T T Y. T
171 T T T T Global Classification »

40

Processor Number
i
Processor Number

30 60 B0 100 120 140 160 s 55 6 65 7 78 8
Execuuion Time (seconds) Execution Time (seconds)

{a) All Classifications (b) Detal

Figure 6: PRISM: Local Processor Classification Points for Global Sequential Access Pattern

4.2. Intelligent Policy Selection

A file access pattern classification as described above is platform-independent and unique
to a particular application exccution. However, an optimal choice of file system policies for
a particular access pattern is system-dependent. A file system uses the classification to
tune file system policies for each input/output platform. By making policy decisions to suit
the application requirements and the system architecture, not only is input/output
performance portable over a variety of platforms, but the file system can provide better
performance over a range of applications than it could by enforcing a single system-wide
policy. This adaptivity should occur transparently, without application hints or user level
optimizations.

Abstractly, PPFS continuously monitors and classifies the input/output request stream.
This classification is passed to the file system policy suite for policy selection and
configuration. For example, when the access pattern classification is sequential, the file
system can assume that file access will continue to be sequential. If the classification is read
only, the file system can prefetch aggressively: if it is write only, a write-behind policy
might be efficient. When the classification is regularly (1-D or 2-D) strided, the file
system can take advantage of this information to adjust the cache size and prefetch
anticipated blocks according to the access and stride sizes.

As described in B4.1.2, we can combine local classifications to make global classifications,
which we use to adjust policies at all system levels with global knowledge. For example,
when all processors read the same file sequentially (global sequential) we can select a
caching policy at input/output nodes that prefetches file blocks sequentially but does not
flush cache blocks unul every processor has accessed them. In contrast, if we detect an
interleaved sequential global pattern, each input/output node could prefetch file blocks
sequentially, retaining them only until each has been accessed in its entirety once.

503

Figure 7 shows a simple, parameterized example of a policy selection algorithm that selects
PPFS policies for a uniprocessor UNIX workstation. lts default behavior is to favor small
sequential reads, typical of UNIX workloads. However, when the classifier detects other
access patterns, the algorithm adjusis policies to provide potential performance
improvements. Quantitative values for the parameters of Figure 7 (eg.
LARGE_REQUEST) depend on the particular hardware configuration and must be
determined experimentally.

The algorithm of Figure 7 is but one simple possibility for policy control. Richer control
structures can be built upon more accurate models of input/output costs. However, in 84.3
we show that evan this simple policy suite suffices to yield large performance increases
over that possible with standard UNIX file policies. In B5 we describe our methodology
for tuning automatically selected policies in response to overall system performance,
closing the classification and performance feedback loop.

if {sequential) ({

if(write only)} {
enable caching
use MRU replacement policy

} else if read only && average request size > LARGE_REQUEST) {
disable caching

} else {
enable caching
use LRU replacement policy

}

if (variably strided || 1-D strided || 2-D strided ({
if (regular request sizes) {
if (average request size > SMALL_REQUEST) {
disable caching
} else {
enable caching
increase cache size to MAX_CACHE_SIZE
use LRU replacement policy
}
)} else {
enable caching
use LRU replacement policy

Figure 7: Dynamic File Policy Selection (Example)

4.3. Experimental Results

As a validation of automatic behavioral classification and dynamic adaptation, we used the
enhanced PPFS to improve the input/output performance of Patufinder, a single processor
satellite data processing code. Pathfinder is from the NOAA/NASA Pathfinder AVHRR
(Advanced Very High Resolution Radiometer) data processing project described in Agbu

504

[15]. Pathfinder processing is typical of low-level satellite data processing applications —
fourteen large files of AVHRR orbital data are processed to produce a large output data set.
It is an extremely input/output intensive application; over seventy percent of Pathfinder
execution time is spent in UNIX input/output system calls.

4.3.1. Pathfinder

The goal of the Pathfinder project is to process existing data to create global, long-term
time series remote-sensed data sets that can be used to study global climate change. There
are four types of Pathfinder AVHRR Land data sets (daily, composite, climate, and browse
images); we consider the creation of the daily data sets. Each day, fourteen files of
AVHRR orbital data, approximately 42 megabytes each, in Pathfinder format are
processed to produce an output data set that is approximately 228 megabytes in
Hierarchical Data Format (HDF) from NCSA [16]). For simplicity, we examine the
processing of a single orbital data file.

During Pathfinder execution, ancillary data files and the orbital data file are opened, and an
orbit is processed 120 scans at a ime. Although the orbit file is accessed sequentially, the
access patterns for other ancillary data files range from sequential to irregularly strided.
The result of this processing is written to a temporary output file using a combination of
sequential and two-dimensionally strided accesses. Finally, the temporary file is re-written
in HDF format to create three 8-bit and nine 16-bit layers.

Table 2 shows the relative execution times for Pathfinder using UNIX buffered
input/output and PPFS with adaptive policies on a Sun SPARC 670. The dynamic
adaptation of PPFS yields a speedup of approximately 1.87 with the policies Figure 7.' The
PPFS automatic classifier could detect that the output file access pattern was initially write
only and scquential, with large accesses, and that the pattern later changed to write only,
strided, with very small accesses. Adapting to the first access pattern phase, PPFS selected
an MRU cache block replacement policy. In the second phase it enlarged the cache,
retaining the working set of blocks.

Figure 8a and Figure 8b illustrate the dramatic benefits of dynamic policy adaptation for
Pathfinder’s execution. Both graphs represent the same amount of input/output; however,
in Figure 8a we use the same static policies for all access patterns. The first cluster of
accesses in each graph is the write only sequential phase. Performance for the first phase is
roughly equivalent using either MRU or the default, non-adaptive LRU replacement policy.
However, enlarging the cache ir. the second phase sut.tantially decreases the average write
duration. PPFS successfully retains the working set of blucks (the overall cache hit ratio
exceeds 0.99), while UNIX buffered input/output forces a write of 8 KB for every one or
two byte access.

' However, due to limited physical memory, we disabled caching for small, variably strided reads.

505

. T T ¥

T T T) 4 T T T Y H N of 4
0 .Lchucmlal Sulded k
R g Sequenual Sinded
_a - LA . .* s l - J
[[g -]
o . D
4 : 13 -
- * . - (3
S L s A0 4 & " L ‘3 K
& 2 . ¢
s e g . smipbuind
C‘:: am b * ———— e LR SO T N , 1
u o]
E + R c :. A . ;
2 (,ml.ﬁ 12 amf ., ’..i. ‘L
Do Lt voony “— L . L '—“&
[UN Tt T) TR T VT DR SR} T T TR ST T] T) 0 S0 190 150 200 251
Exccution Time (seconds) Execution Time (seconds)
(a) PPFS (Non-adapuve) PPFS (Adaptive)

Figure 8: Pathfinder Writ~ ¥ (rations (Beginning Phase)

Table 2: Pathfinder Execution Times (seconds’

Experimental System User Time Total
|__Ewnvironment Time
UNIX 1578.2 1781.1 42993
PPFS 400.4 12704 2300.8

s. Performance-Based Steering

Although file system policy selection is partially a function of application input/output
access patterns, system performance ultimately determines the success of a particular
policy choice. Performance sensors provide feedback on file system behavior that can be
used to optimize the parameters of policy decisions.

Below, we describe 1 complement to qualitative access pattern classification: sensor based,
closed loop policy selection and configuration. As described in B2.2 and shown in Figure
3, our framework partitions the stecring problem into three components. The sensor
metrics in 85.1 provide input for policy selectors of B85.2 which, based on system and
application performance history, select policy paramcters and activate them via the policy
actuators of B85.3.

S.1. Performance Sensors

Table 3: PPFS Sensor Metrics

__Dimension ___

Operation Count Total number of input/output requests

506

Operation Time Mean operation service time

Read Count Number of read requests

Read Byte Count Number of bytes read

Read Time Meuan read service time

Write Count Number of write requests

Write Time Mecan write_service time

Cache Hits Number of requests serviced by caches

Server Cache Hits Number of requests scrviced by offnode caches

Cache Check Time Tiume to check local cache

Server Time Time spead on input/output servers

Server Queue Time Time spend 1n disk queue

Scrver Queuc Lengthy Length of disk queue

Prefetch Byte Count Number of bytes prefetched

Prefetch Cache Check Time | Time to scan cache on prefetch initiation

Prefetch Off Node Time Time spent offnode for prefetch operations

Hit Miss Time Tune spent waiting for overlapped prefetch to
complete

To capture input/output performance data, we augmented PPFS with a set of performance
sensors that arc periodically sampled using the Pablo instrumentation library of Reed [17].
Table 3 shows the current PPFS sensor metrics. We chose these particular metrics
because they are incxpensive to calculate, and we belicve they are broad enough to reflect
the performance of malleable file system policies within PPFS. In practice, many metrics
are strongly corrclated with others, magnifying or validating trends detected via other
metrics.

§5.2. Policy Selectors

Table 4: Sample Sequential Access Selectors

Sensor Conditions Policy Options
(poor_read_service_times) & Increase Cache Size
(many_read_requests) & Increase Prefetch
(inanagable_byte_throughput) & Amount

(NOT high_hit_ratio)
(NOT managable_byte_throughput) Decrease Cache Size
& Disable Prefetch

(Jow_hit_ratio)

Given detailed performance sensor metrics and an access pattern classification, our
framework tunes file system policies using the sensor metrics as the indices to a selector
table containing policy parameters for that set of sensor metrics. The dashed lines of
Figure 1 show the flow of sensor data from PPFS modules to the policy selectors. Table 4
shows some sample selectors that a system might provide, given a sequential access

507

pattem classification. For example, if the sensor metrics indicate that relatively smati read
requests take a long time and the cache hit ratio is low, we might increase the cache size
and the number of blocks prefetched to anticipate the request stream. If the sensors
indicate that too much data is being requested to effectively cache and prefetch, we may
disable caching and prefetching altogether to avoid thrashing the cache.

The sensor rules shown in Table 4 are qualitative rather than quantitative. We quantify the
selector table rules when we calibrate them with the specific sensor metrics for a given
platform. For example, on an IBM SP/2 with 128 MB of memory per node
manageabie_byte_thruput may calibrate to (Read_Byte_Count’ < 100 MB/second).
Similarly on an Intel Paragon with only 32 MB of memory per input/output node, the
calibration may be (Read_Byte_Count < 25 MB/second).

To create selector tables for a given access pattern, we need to know how different file
system policies perform for this access pattern. By executing access pattern benchmarks
with a variety of policies and under a variety of load conditions, we can develop a set of
selector rules such as those shown in Table 4. We calibrate the qualitative rules on a given
platform by storing the quantitative performance sensors with the qualitative rules. Our
portable, dynamic steering infrastructure can then adapt to a system’s resource constraints
by simply loading selector tables calibrated for that system.

5.3. Policy Actuators

After the policy selector mechanism determines what file system policy parameters
should be used, actuators provide the mechanism to instantiate policies and configure
parameters. Currently, PPFS supports actuators that allow dynamic reconfiguration of
cache sizes, replacement policies, and prefetch and write behind parameters on each client
and server node. These actuators provide a rich variety of controls to our dynamic
steering infrastructure. We have tested these controls by interactively steering application
behavior based on a virtual reality display of the sensor metrics as in Reed {18].

54. Experimental Results

To demonstrate the efficacy of sensor-based adaptive control when coupled with behavioral
assertions, we used an input/output benchmark to conduct a set of simple experiments on
several parallel architectures. We had several fundamental goals for the benchmark study.
First, we wanted to verify that sensor metrics help us make improved PPFS policy
decisions. We also wanted to determine how long we have to wait between policy changes
to allow the sensor metrics to settle to their new steady state values.

In our benchmark, a group of tasks reads disjoint interleaved portions of a shared file.
Task i reads all blocks, i modulo the number of tasks (e.g., task 0 of p tasks reads file

? Note that Read .Byte_Count is a sensor metric from Table 3

508

blocks 0, 2p, p, ...) Between accesses, a processor computes for a uniform random
interval with a parametric mean. We cxecuted this benchmark on several parallel
architectures with a variety of request sizes, prefetching options, and computation
overheads for varying numbers of reader tasks.

18 -7 T T Y T T T I8 T T T T ™
J# 1 Processor o—
16 16 2 Pracessors * A
P 4 Processors O -

- 214 »-\ 8 Processors % 4
g i4 -g \ 16 Processors = -
3 gt 1
Zn 3 \
g Eor 1

10]
5y g \
D] 6
@ A
g6 . g4
= Some Cache '\'1!52‘_85‘ - >

4 - % -7 I 2

2 i i S U B I 1 L 0

] 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120
Elapsed Exccution Time {seconds) Elapsed Execution Time (Seconds)
a) Changing Interaccess Latenc b) Changing Processor Count
ging y ging

Figure 9: Sensor Variation for Different Workloads

Figure 9 shows the effect on server request overhead® of varying the inter-access
computation interval and thc number of nodes reading a file. This experiment was
performed on an Intel Paragon XP/S using a single input/output server controlling a
RAID-3 disk array with a throughput of 3.1 MB/second. In Figure 9a, eight processors
read the filc and the PPFS server prefetches only sixteen KB ahcad of the access stream.
In Figure 9b, on the other hand, the PPFS server prefetches 256 KB ahead and clients wait
on average 175 milliseconds in between each access. The PPFS server performance
depends on the number of reguests arriving at the server each second. In Figure 9a, the
arrival rate varies from 27 to 54 requests per second. Similarly, in Figure 9b, the request
arrival rate varies from 6 to 92 requests per second.

The sensors values in Figure 9 fall into three bLasic categories. As shown in the top of
Figure 9a, most of the requests could result in cache misses coupled with long queuing
delays where the server time exceeds ten milliseconds. A substantial increase in the
amount of prefetching is required to alleviate this problemn. When some of the requests
result in cache misses, we see that the server time is between four and six milliscconds.* A

' Server request overhead is the time that a request spends on the PPFS server node. It includes
cache check time, buffer copy vverhead, and disk queuing times if the request is not in the server
cache

* In Figure Yb, the startup transient lasts about sixty seconds before these cache misses occur
regularly

509

moderate increase in the number of blocks prefetched should result in improved
performance. Finally. at the bottom of Figure 9b, we see that when all of the requests can
be serviced from the cache, the mean time spent on the PPFS server is less than one
millisecond.

Table 5: Benchmark Selector Rules

Sensor Conditions I Pelicy Options
gantltative Rules
(large_server_times) & Substantially Increase
(many_read_requests) Prefetch Amount
(moderate_server_times) & Moderately Increase
| !man;_read_rcauesls: Prefetch Amount
guamitative Calibration ‘
(MEAN_SERVER_TIME > 8 MS) & Substantially Increase
{READ _REQUEST COUNT >4()) Prefetch Amount
(READ _REQUEST_COUNT > 40 & Moderately Increase
(MEAN_SERVER_TIME > 2 MS) & Prefetch Amount
(MEAN_SERVER_TIME < 8 MS)

Based on the figure, we can develop the two simple selector rules shown in Table S for this
benchmark access pattern. One rule detects when the prefetch parameters should be
increased considerably while the other detects when the prefetch parameters should be
increased slightly. To calibrate these rules for the Intel Paragon with a single RAID-3 disk
array, we simply augment the selector table with the appropriate sensor values as shown at
the bottom of the Table 5. When the calibrated selector table is used for an application that
exhibits this access pattern, the steering infrastructure can detect poor PPFS server
performance and increase the prefetch parameters appropriately.®

6. Related Work

Current work in parallel file systems centers on understanding application input/output
requirements and determining how to consistently deliver close to peak input/output
performance. This challenge necessitates re-examining the traditional interface between the
file system and application.

3 The rules in Table 5 are examples of a subset of the needed rules for this benchmark. A complete
set of rules could also reduce the amount of prefetching performed when the sensors indicate that
resources were being wasted.

510

Charactenization studies have revealed a large natural vanation in input/output access
patterns. During the past two years, our group and others have used the Pablo input/output
analysis software to study the behavior of a wide variety of parallel applications on the Intel
Paragon XP/S [1,2] and IBM SP/2. We have determined from thesc application studies
that high performance applications exhibit a wide variety of input/output request patterns,
with both very small and very large request sizes, reads_and writes, scquential and non-
sequential access, and a variety of temporal variations.

Given the natural variation in paralle]l input/output patterns, tailoring file system policics to
application requirements can provide better performance than a uniformly imposed set of
strategics. Many studies have shown this under different workloads and environments
[5.6,7]. Small input/output requests arc best managed by aggregation, prefetching,
caching, and write-behind, though large requests are better served by streaming data
directly to or from storage devices and application buffers. There arc several approaches to
application policy control; these can be grouped into systems that offer explicit policy
control (e.g. SPIN from Bershad [19], exokemnel from Engler [20], the Hurricane File
System from Krieger [21], and Galley from Nieuwejaar [22]), and implicit policy control,
via hints [4], expressive user interfaces (c.g., ELFS [7] and collective input/output as in del
Rosario [23] and Kotz [24]), or intclligent modeling of file access (e.g., Fido from Palmer
{25] and knowlege based caching from Korner [26]). Fido 1s an example of a predictive
cache that prefetches by using an associative memory o recoguize access patterns over
time. Knowledge based caching has been proposed to enhance cache performance of
remote file servers.

The second compoanent of our rescarch, dynamic performance based steering, has been
used successfully in many contexts. A natural analog to explicit policy control is interactive
steering, where the steering infrastructure extracts run time sensor information from an
application, presents this .nformation to the user who selccts system or application policies,
and actuates these policies to change application behavior. Falcon as in Gu [27] and
SciChem from Parker [28] are two representative examples of this interactive approach.

In contrast to interactive steering environments, automatic steering environments do not
require continuing user involvement. Instead, steering decisions are made automatically
without user intervention. DIRECT [10], Falcon [29,30] and the Meta Toolkit [9] all
provide automatic steering interfaces. DIRECT 1argets real time applications, a domain
where the primary concern is validating that the system meets real-time constraints. This
goal is different from run-time performance improvement, but the steering infrastructure is
similar. Automated run-time steering is used in Falcon to select different mutual exclusion
lock configurations based on the number of threads blocked on the lock [30]. The Meta
Toolkit provides a framework for performing dynamic steering and provides special
guards that help to maintain mutual exclusion of critical state variables [9] that may be
changed during actuator execution. When an actuator is invoked, the appropriate guards
are ¢ vecuted before the system module is modified.

511

7. Conclusions

The wide variety of irregular access patterns displayed by important input/output bound
scientific applications suggests that optimizing application performance requires a judicious
match of resource management policies to resource request patterns. Because the
interactions between dynamic, irregular applications and system software changc during
application execution, we believe that the solution to this performance problem is adaptive
file system policies that are controlled by user-level access patterns and by system-level
performance metrics.

In this paper, we described a prototype of an adaptive file system and presented the results
of experiments demonstrating the viability of this approach. This prototype, built upon on
our PPFS user-level parallel file system. selects and configures file caching and prefetching
policies using both qualitative classifications of access patterns and performance sensor
data on file system responses.

In the coming months, we plan to more tightly couple automatic access pattern
classification with performance steering. We are currently rounding out the prototype by
extending PPFS to perform run time global access pattern classification and enhancing the
performance-driven steering infrastructure.

References

[1] CranDALL, P.E., AYDT, R.A, CHIEN, AA., AND ReeD, D.A. Characterization of a
Suite of Input/Output Intensive Applications. In Proceedings of Supercomputing ‘95
(Dec. 1995).

[2] SMirNg E., AvypT, R.A,, CHIEN, A A. AND REED, D.A. 1/O Requirements of Scientific
Applications: An Evolutionary View. In Fifth International Symposium on High
Performance Distributed Computing (1996).

[3] HUBER, J., ELFORD, C.L., REED, D .A., CHIEN, A.A., AND BLUMENTHAL, D.S. PPFS: A
High Performance Portabic Parallel File System. In Proceedings of the 9th ACM
International Conference on Supercomputing (Barcelona, July 1995), pp. 385-394.

[4] PaTTERSON, R.H., GiBsoN, G.A., GINTING, E., STODOLSKY, D., AND ZELENKA, J.
Informed Prefetching and Caching. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (December 1995), pp. 79-95.

[5] Kotz, D, anDp Eruis, C.S. Practical Prefetching Techniques for Multiprocessor File
Systeme. Journal of Distributed and Parallel Databases 1, 1 (January 1993), 33-51.

[6] KRIiEGER, O., AND STuMM, M. HFS: A Flexible File System for Large-Scale
Multiprocessors. In Proceedings of the 1993 DAGS/PC Symposium (Hanover, NH,
June 1993), Dartmouth Institute for Advanced Graduate Studies, pp. 6-14.

[7]1 GrimMsuAw, A.S., anD Lovor, Jr., E.C. ELFS: Object-Oricnted Extensible File
Systems. In Proceedings of the First Intermational Conference on Parallel and
Distributed Information Systems (December 1991), p. 177.

512

[8] VETIER, J., AND SCHWAN, K. Models for Computational Steering. In Proceedings
International Conference on Configurable Distributed Systems Annapolis (May
1996).

[9] Woon, M.D. Fauli-Tolerant Management of Distributed Applications Using the
Reactive System Architecture. PhD thesis, Cornell University, January 1992.
Available as technical report TR91-1252.

{10] GERGELFIT, M., KAISER, J., AND STREICH, H. Direct: Towards a Distributed Object-
Oriented Real-Time Control System. In Workshop on Concurrent Object-based
Systems (Oct. 1994).

{11] Gu, W., VETTER, J.,, AND SCHWAN, K. An Annotated Bibliography of Interactive
Program Steering. Tech. Rep. GIT-CC-94-15, Colicge of Computing, Georgia
Institute of Technology, 1994,

[12] HinToN, G.E. Connectionist Learning Procedures. Artificial Intelligence 40 (1989),
185-234.

{13] HENDERSON, R.D. Unstructured Spectral Element Methods: Parallel Algorithms
and Simulations PhD thesis, June 1994,

{ 14] Henperson, R.D., AND KArNIADAKIS, G.E. Unstructured Spectral Element Mecthods
For Simulation of Turbulent Flows. Journal of Computational Physics 122, 2 (1995),
191-217.

[15] AcBu, P.A_, AND JAMES, M.E. The NOAA/NASA Pathfinder AVHRR Land Data Ser
User's Manual. Goddard Distributed Active Archive Center, NASA, Goddard Space
Flight Center, Greenbelt, 1994,

[16) NCSA. NCSA HDF, Version 2.0. University of Illinois at Urbana-Champaign,
National Center for Supercomputing Applications, Feb. 1989.

[17] Reep, D.A., AvyDdT, R.A., NoE, R.J., RoTH, P.C., SHIELDS, K.A., SCHWARTZ, B.'W.,
AND TaVeRA, L.F. Scalable Perforinance Analysis: The Pablo Performance Analysis
Environment. In Proceedings of the Scalable Parallel Libraries Conference, A.
Skjellum, Ed. IEEE Computer Society, 1993, pp. 104-113.

{18] ReeD, D.A_, SHIELDS, K. A., TAVERA, L.F., ScuLLiN, W.H., AND ELFORD, C.L. Virtual
Reality and Parallel Systems Perforn. .nce Analysis. [EEE Computer (Nov. 1995),
57-67.

[19] BERsHAD, B.N., SAVAGE, S., PARDYAK, P., SIRER, E.G., Fiuczynski, M.E., BECKER,
D., EGGERs, S., AND CHAMBERS, C. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles (December 1995).

[20] ENGLER, D.R., KAASHOEK, MLF., AND JR., J.O. Exokernel: An Operating System
Architecture for Application-Level Resource Management. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (December 1995).

[21] KRIEGER, O. HFS: A Flexible File System for Shared-Memory Multiprocessors.
PhD thesis, University of Toronto, October 1994,

[22]) NIEUWEIAAR, N., AND KOTZ, D. The Galley Parallel File System. In Proceedings of
the 10th ACM International Conference on Supercomputing (May 1996). To appear.

|23]) DEL ROSARIO, J.M., BORDAWEKAR, R., AND CHOUDHARY, A. Improved Parallel VO via
a Two-Phase Run-Time Access Strategy. In IPPS '93 Workshop on Input/Output in
Parallel Computer Svstems (1993), pp. 56-70. Also published in Computer
Architecture News 21(5), December 1993, pages 31-38

513

[{24]) Kotz, D. Disk-directed I/O for MIMD Multiprocessors. In Proceedings of the 1994
Symposium on Operating Systems Design and Implementation (November 1994), pp.
61-74. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994.

[25] PALMER, M., AND ZDONIK, S.B. Fido: A Cache That Leains to Fetch. In Proceedings
of the 17th Internatio.ial Conference on Very Large Data Bases (B sreclona, September
1991), pp. 255-262.

[26] KorNER, K. Intelligent Caching for Remote File Service. In Proceedings of the 10th
International Conference on Distributed Computing Systems (May 1990), pp. 220-
226.

{271 Gu, W., EISENHAUER, G., KRAEMER, E., ScHwaN, K., STASKO, J., AND VETTER, J.
Falcon: On-line Monitoring and Steering of Large-Scalc Parallel Programs. Tech.
Rep. GIT-CC-94-21, College of Computing, Georgia Institute of Technology, 1994.

[28] PARKER, S.G., AND JounsoN, C.R. SciRun: A Scientific Programming Environment
for Computational Steering. In Proceedings of Supercomputing '95 (December
1995).

[29] GHENH, A., MUKHERIEE, B., SiLVA, L., AND SCHWAN, K. Ktk: Kernel Support for
Confiszrable MNbjects and Invocations. Tech. Rep. GIT-CC-94-11, College of
Computing, Georgia Institute of Technology, Feb. 1944.

[30} MUKHERIEE, B., AND ScuwaNn, K. Improving Performance by Use of Adaptive
Objects: Experimentation with a Configurable Multiprocessor Thread Package. Tech.
Rep. GIT-CC-93-17, College of Computing, Georgia Institute of Technology, Feb.
1993.

514

NEXT
DOCUMENT

Towards Scalable Benchmarks for Mass Storage Systems

Ethan L. Miller
Computer Science and Electrical Engineering Department
University of Maryland Baltimore County
1000 Hilltop Drive
Baltimore, MD 21228’
elm'a'cs.umbc.edu
Tel: 410-455-3972
Fax: 410-455-3969

Abstract

While mass storage systems have been used tor several decades to store large quantities
of scientitic data. there has been little work on devising standard ways of measuring
them. Lach system is hand-tuned using parameters that scem to work best. but it is difti-
cult to gauge the potential eftect of similar changes on other systems. The proliferanon
of storage management software and policies has made it difficult for users to make the
best choices for their own systems. The introduction of benchmarks will make it possible
to gather standard pertormance measurements across disparate systems. allowing users to
make intelligent choices of hardware, software, and algorithms for their mass storage
system.

This paper presents guidelines for the design of a mass storage system benchmark suite.
along with nreliminary suggestions for programs to be included. The benchmarks will
measure both peak and sustained performance of the system as well as predicting both
short-term and long-term behavior. These benchmarks should be both portable and scal-
ab’e so they mav be used on storage systems from tens of gigabytes to petabytes or more.
By developing a standard sct of henchmarks that reflect real user workload. we hope to
encourage system designers and uvsers o publish performance figures that can be com-
pared witn those of other systems. This will allow users to choose the system that best
meets their needs best and give designers a tool with which they can measure the per-
formance effects of improvements to their systems.

1. Introduction

Mass storage systems are usea by many data centers around the world to store and man-
age terabytes of data. These systems are composed or bott hardware from many vendors
and storage management software, often from a different vendor. Fach data center builds
its own system, and no two are alike. How can two different mass storage systems be
compared? Additionally, how can users gauge performance of planncd systems?

We believe the introduction of a standard benchmark suite for mass storage systems will

enable storage users to plan their systems in the same way that the SPEC and Perfect
benchmarks allo v users to compare different computing systems. i1 such suites. one or

515

more of the benchmarks should sufficiently resemble a user's needs so that she can pre-
dict the performance on her own application. Similarly. data center personnel should be
able to pick the metrics that most closely model their mass storage workloads. allowing
some prediction of system performance without the need to experimentally configure
multiple systems.

Mass storage system benchmarks must be portable, scalable, and reflective of real system
workloads. Achieving portability will require limiting the scope of changes that must be
made to the tests for different systems. Scalability is necessary because a mass storage
system can hold from tens or hundreds of gigabytes to petabytes. and access pattemns and
file sizes will both vary greatly across this range of sizes. Finally, benchmarks must re-
flect real system workloads. Rather than rely on a single metric, a mass storage system
henchmark suite must test both burst and sustained transfer rates and gauge the effective-
ness of migration algorithms using several "typical workloads.

This paper proposes several candidate benchmarks for a scalable mass storage system
benchmark suite. These programs are synthetic; they do not include code from actual
user applications, but instead are based on access patterns observed on real mass storage
systems. Some of the benchmarks generate access patterns similar to those of individual
programs, typically requiring less than a day to run. Others model long-term access by
many users t0 mass storage over periods of many days. Both types of benchmarks in-
clude programs that mimic "real world” access patterns as well as others that stress the
system to find its limits. since both factors are important to mass storage system users.

While this paper contains concrete suggestions for mass storage systems benchmarks.
there is still much work to be done. Using feedback from users of mass storage systems
as well as vendors, it is our hope that this bencnmark suite will become a standard that
will ease the process of comparing many different options in storage system design.

2. Background

Research into mass storage system benchmarks builds on work in two different areas: the
analysis cf mass storage system usage patterns and the development of benchmark suit.s
for different areas of computer systems. There are many papers that discuss benchmarks
for areas ranging from processors to file systems to disks, providing a good foundation
for deciding what a benchmark should (and shouldn't) do. However, there are relatively
few quantitative papers on the usage patterns seen by mass storage systems; while many
organizations study their systems to help plan for the future, these studies are rarely pub-
lished.

Of the many papers that have been published about benchmarking, the most relevant to
thi research are those on file system benchmarks. These benchmarks fall into two broad
categories: those that consist of a single program {1,2] and those that are built from many
programs and are meant to model longer-term usage [3]. Additionally. many papers use
ad hoc benchmarks to compare research file systems to already-existing file systems.

516

The few file system benchmarks that do cxist are designed to test workstation-class file
systems. both standalone and in a networked environment. Several of the benchmarks
consist of a single program sending many read and write requests to the file system: such
programs include 10Stone {1]. iozone [4). a2~ bonnie |5]. These benchmarks are de-
signed to pauge the maximum file system o. "k system performance available to a sin-
gle application over a short period of time. Ho vever, constant improvements in memory
size and disk performance require scalable benchmarks: Chen's scalable disk benchmark
[2] addresses this problem by scaling the workload to the system used. Still. this scaling
is restricted to a single program.

NFSstone and the Laddis benchmark used by SPEC. on the other hand. are designed to
model the activity of several programs and their effects on the file server. Rather than
present a workload from a single client, these benchmarks can mimic an entire network of
workstations. These benchmarks may be scaled by increasing the file request rate or the
file size or both. Unfortunately. they are very specific in that they test the ability of a file
scrver to respond to NFS requests. While NFS is a commonly-used file system. it is not
clear that good performance for an NFS workload is necessarily the hallmark of a high-
pertormance file system.

An even more complex benchmark. the Andrew file system benchmark [3] tests the entire
file system by including operations such as file creation and deletion. However, the An-
drew benchmark is not directly scalable, and still runs for only a few minutes or less.
Clearly. a mass storage system benchmark must measure performance over longer peri-
ods of time as well as gauging the burst rates that the system can attain.

Many rescarchers gauging the performance of their new file systems create their own
“benchmarks™ that involve reading and writing many files. While such ad hoc bench-
marks can provide comparisons between different file systems they require that the
authors of such benchmarks run them on all of the systems being compared. This burden
1s not excessive for rescarchers because they often compare their rescarch file system to
one or two “real-world™ systems that are already running at their site. However. this ap-
proach creates problems for “normal™ users because most of them do not have access to
the systems whose performance they wish to measure. While this approach is inteasible
for standardized comparisons of many mass storage systems, the idea behind it is a good
one: use a typical workload to measure performance. This method can be varied to find
both performance under a normal load and the maximum load a system can handle.

Since synthetic benchmarks must mimic actual usage, knowing the access patterns ex-
hibited by users of real systems is crucial. The system at the National Center for Atmos-
pheric Rescarch was studied in [6], and the National Center for Supercomputing
Applications was studied in [7]. Both of these studies suggest that mass storage system
performance must be measured over a period of days or weeks because that is the time
scale over which file migration algorithms operate. Examining shorter periods is similar
o running file system benchmarks that access a file that fits in memory — it provides a
measure of peak bandwidth but does not give an indication of long-term performance.

517

These papers, along with other studies done for internal use at various organizations.
provide a basis for designing benchmarks that test long-term mass storage system per-
formance.

Short-term performance of large storage systems is also an important metric. Bench-
marks that stress the file system as a single program would can model their 1/0 after the
single program access patterns such as those reported in [8] and [9], which detail usage
patterns exhibited by supercomputer and parallel computer applications, respectively.
Short-term benchmarks might also include programs that stress the storage hierarchy.
such as one that searches the relatively short file headers of hundreds of multi-megabyte
files for a certain pattern.

3. Benchmark Characteristics

In order for a collection of mass storage system benchmarks to be useful, the benchmarks
must have several features and characteristics. First and foremost, they must provide a
good basis for comparing two systems that may be very different. They must also be
portable and scalable, and should reflect real system workloads.

3.1 Suitability

Perhaps the most important quality for a benchmark suite is suitability. A benchmark
must do two things to be useful. First, its results must bear some relation to the real use
of a system. Typically, this is a predictive relation — the performance of a benchmark
should be directly related to the performance of a real workload that the user wii! even-
tually run. Second, a benchmark suite should allow the comparison cf two different sys-
tems in a manner more meaningful than “A is faster than B.” While this is a good
observation, it is almost always necessary to know how much faster A is relative to B.

Benchmark suites such as SPECint95, SPECfp95 and Perfect |[10] are successful in large
part because they use real programs (or fragments of them) to predict the performance of
a computer system. A combination of several of the benchmark programs from these
suites that closely mirrors the intended use of a system can usually be found, and the per-
formance of the system on the real workload can be approximated by combining the sys-
tem’s scores on each individual benchmark program. Thus, benchmark reporting usually
includes both a suite-wide average and a listing of the components’ individual scores.
The average is useful for gauging overall performance. while the individual listings allow
the prediction of performance for a specific workload.

A relatively small suite of benchmarks works well for CPU benchmarks, but how will it
work for mass storage systems? A benchmark suite may contain dozens of programs. but
they are of no use if a user cannot assemble some of them into a workload that resembles
her usage patterns. Fortunately, there are some general access patterns for mass storage

518

systems that may be generated by a benchmark suite. These patterns will be discussed in
Section 4.

3.2 Portability

The portability of a benchmark suite is another major concern for mass storage system
benchmarks. CPU benchmarks are often portable because the interface to the system is at
a high-level — programs are simply written in a high-level language such as C or
FORTRAN. Running the benchmark on a new system requires is largely dependent on
the existence of a compiler for the appropriate language being available for the system
being tested. While there are may be other requirements for a portable CPU benchmark
such as environment or operating system dependencies, building portable benchmark
suits for CPUs is relatively well understood.

Portability of mass storage system benchmarks 1s another matter altogether. While mass
storage systems tend to have the same functionality, they often have very different inter-
faces. Some systems require a user to explicitly request transfers to and from tertiary
storage, while others do so automatically. Worse, the commands to effect such transfers
are often different from system to system. As a result, mass storage system benchmarks
will likely need to be customized to run on each individual system. To preserve portabil-
ity. this customization should be limited to a few small pieces of code so that porting the
benchmarks to new systems is not a difficult task. Nonetheless, there may need to be
large changes in the benchmarks between systems. While it is straightforward to make a
small change to read and write files via system calls or fip. it may be more difficult to
adapt a benchmark that assumes explicit transfers of files between tertiary storage and
disk to a system that uses implicit transfers. These tradeoffs will be discussed in Sec-
tion 4.

A second difficulty with portahility of mass storage system benchmarks is the existence
of different features on various mass storage systems. This issue is not present in CPU
benchmarks — while an individual processor may not have a vector coprocessor or
floating point unit, it can emulate those features using other instructions, albeit at a loss
of speed. However, mass storage systems may have features that are simply not present
elsewhere and that greatly improve performance. For example, one mass storage system
might have the ability to compress files before storing them tape, while another lacks this
feature. Should the two systems be compared without compression? The use of com-
pression is likely to slow down the system that uses it, but it will also free up additional
space. The decision of whether to include such features will be left to the benchmarker:
as long as the settings of such relevant features are reported, a user can choose the appro-
priate benchmark results.

519

33 Scalability

The second goal of the benchmark suite is scalability. The suite must permit comparisons
of two systems of roughly equivalent size, regardless of whether their capacity is 50 GB
or 500 TB. On the other hand. comparing the performance of two mass storage systems
of very different sizes makes little sense since the two systems will almost certainly have
different workloads — a 50 GB storage system would not experience many repeated
reads and writes of 1 GB files, though a 50 TB system certainly might.

Scaling the benchmarks can be done by a combination of two methods: increasing the
request rate, and making individual requests larger. Increasing the request size reflects
the larger data sets that necessitate larger storage systems. However, more storage space
can also correspond to a larger user community or faster computers, both of which can
increase request rate as well as allowing larger data sets. The TPC database benchmarks
[10] follow this model. increasing request rate as the capacity of the storage system in-
creases while keeping request size relatively constant.

Not all of the benchmarks need be scalable in order to provide a scalable benchmark
suite, though. Clearly, some of the benchmarks must place a higher demand on the sys-
tem as it becomes larger, but individual benchmarks need not. For exa:aple, a benchmark
that mimics the behavior of a single program requesting a single gigabyte file might not
change from a 50 GB system to a 50 TB system. Since this benchmark measures peak
transfer bandwidth and nothing clse. 't does not have to scale up as the system becomes
larger. However, other benchmarks must measure the performance of the system as a
whole instead of focusing on short-term performance issues such as peak transfer rate. It
is these benchmarks that must take parameters governing their behavior to allow them to
model various workload levels. A benchmark measuring a storage system’s ability to
service clients, for example, must take the number of users as an input. For small sys-
tems, this number might be three or four. For larger systems. though. it could be several
hundred. Similarly. average request size and an individual user’s request rate will be dif-
ferent for different systems: these parameters must be customizable between benchmarks.

3.4 Feasibility

While mass storage system benchmarks share many characteristics with CPU and disk
benchmarks, they also have limitations not suffered by CPU and file system benchmarks.
CPU benchmarks usually have running times of a few hours or less, with many needing
only a few hundred seconds to complete. Disk benchmarks may take longer. but still
complete in well less a day for cven the longest benchmarks. These time scales are too
short for mass storage system henchmarks, however. Individual programs using a mass
storage system may complete in a few hours or less, but long-term performance is just as
important. and much more difficult to measure. The effects of a poorly-chosen file mi-
gration algorithm may not be apparent until several weeks have passed because the stor-
age system’s disk is not filled until then. Worse. policies governing { le placement on
tape may have little effect on overall performance until files are mig.ated from dish to

520

tape and back. a process which could take several months hefore a significant number of
files have taken the path.

Additionally, long-running benchmarks are difficult to use for tuning purposes. Seeing
the effect of a faster CPU on a benchmark suite requires only an hour or two, while add-
ing onc more tape drive may not show performance improvement on a benchmark suite
for days. This lack of responsivencss makes it likely that mass storage system bench-
marks will be run on simulators rather than on real equipment at least some of the time:
this requires the development of good simulators that model software systems and their
quirks as well a, hardware.

A second issue for mass storage system benchmarks is the existence of a system on which
the benchmarks can be run. This is typically a simple matter for CPU benchmarks be-
cause the manufacturer usually has a system on which the benchmarks can be run. For
expensive supercomputer systems, the manufacturer need only run the suite as part of the
development process or even during the testing period for a new system. Since the
benchmark suites take less than a day. the equipment cost is minimal. For mass storage
systems. however. equipment cost is not as low. A system is usually built from compo-
nents from several vendors. and the installation of the software to manage the storage is
hardly trivial. The difficulty of assembling a storage system for benchmarks is another
factor that makes it likely that a benchmark suite used for its predictive ability will be run
on simulated rather than real hardware.

4. Proposed Benchmark Programs

Based on the analyses presented in several studies of mass storage systems [6.7] and the
behavior of individual programs [8.9]. we propose a collection of mass storage system
benchmark programs. To assure their portability. the benchmarks use few file system
features beyond reading. writing. file creation, file deletion and directory listings. Rather.
they focus on the ability of the mass storage system to supply and store data. They are
not restricted to reading and writing whole files, however: some of the benchmarks per-
form operations that model workstation file usage of large scicntific files including partial
file reads. Although such operations may not be supported efficiently by many mass
storage systems today, our experience has shown that users viewing large data files often
do not view the entire file.

The benchmarks in this collection fall into two broad categories: short-running bench-
marks that highly stress the system to gauge its maximum performance. and long-running
benchmarks that model long-term user behavior, allowing the testing of file migration
algorithms and other long-term processes that cannot be measured by a single program
that only runs for a few hours. It is our expectation that the long-running benchmarks
will be primarily run on a simulation model of the mass storage system rather than on an
actual system because of the time and expense involved in dedicating a storage system to
a benchmark suite for more than a month.

521

4.1 Short-Running Benchmarks

One aim of the benchmark suite is to measure short-term performance of mass storage
systems. Since these systems consist of both disks and tertiary storage devices such as
tapes and optical disks, any benchmark suite must be capable of measuring the sustained
performance of each of these parts of the system. Measuring the peak performance of the
disk is straightforward, but measurements of tertiary storage device performance may be
more difficult, particularly in systems that do not require explicit commands to move files
between disk and tertiary storage.

The first program in the benchmark suite merely writes several large files and then reads
them back. The number of files to be written and the size of the files i configurable, al-
lowing users to scale up the benchmark to larger systems. This benchmark only tests
peak sequential read and write performance; it does not attempt to gather any other file
system metrics. Nonetheless, the peak performance of a file system on large sequential
reads is of great interest to many users, necessitating the inclusion of such a benchmark.

A similar program can be used to measure the ability of a mass storage system to create
and delete small files. As with the first program, the number and size of files are speci-
fied as parameters. Rather than merely create all of the files, though, this benchmark
creates the files, lists the directory in which they were created, reads them in, and then
deletes them. These operations stress other aspects of the mass storage system software,
showing its performance on small file operations.

Another variation on the first program creates several large files and then reads only the
first few blocks of each file, “searching” for a particular piece of data. This benchmark is
similar to the access pattern exhibited by a user when she is looking through the headers
of large data files.

The remaining “micro-benchmarks™ model two types of real user behavior: workstation
users accessing the mass storage system, and scientific programs using the storage system
for input and Jutput. Human users typically read a group of files over the span of several
hours, perhaps performing a few writes during that time. While some files are read in
their entirety, many are partially read as users look at slices through their data. Since this
program is designed for measuring short-term performance, it only models a user’s access
to a single set of data over a relatively short period of time. Longer-term benchmarks that
model user behavior are mentioned in Section 4.2. While this program only generates the
workload for a single user, it is possible to run multiple copies of the program, generating
a workload resembling that from multiple users.

Batch jobs using the storage system behave quite differently from human users. They
almost always read entire files and perforrn more and larger writes than do humans [6].
stressing the storage system in a different way. Programs such as out-of-core matrix de-
composition and global climate modeling make excellent benchmarks because their 1/0
access patterns can easily be captured without the need to actually perform the computa-
tions called for in the programs [12]. Rather than actually factor a large matrix, the

522

benchmark simply reads and writes the files in the same pattern as the real application .
Similarly, the benchma.k simulating global climate modeling does not do any actual
modeling, but rather follows the same access pattern as the real program. This allows the
benchmarking of a high-performance storage system without the need for a high-powered
CPU to run applications. This is particularly important for planning purposes, since there
may not yet be a computer that can run the program sufficiently fast — given the rate
with which computers increase in processing power, a storage system that will become
operational in eighteen months must deal with programs twice as fast as those running
today.

The benchmarks listed in this section are generally useful for determining peak perform-
ance for bandwidth, request rate, or both. Combining the various beachmarks and run-
ning several copies of each allows users to customize the benchmark to their nceds.
matching the presented workload to what their installation will eventually support. How-
ever, these benchmarks are only good for measuring peak rates such as maximum band-
width for reading files from tertiary storage or disk or the maximum rate at which a user
may create small files. They do not measure any long-term statistics such as the efti-
ciency of the file migration aigorithms or the efficacy of tertiary storage media alloca-
tion.

4.2 Long-Running Berchmarks

A second class of benchmarks are those that generate multi-week workloads. Unlike
CPUs and disks, mass storage systems exhibit activity with cycles considerably longer
than a day. To measure the effects of file migration and differing sizes of disk cache for
tertiary storage, benchmarks must run sufficiently long so that the disk fills up. Merely
filling the disks is not sufficient, though, since the benchmark must also exhibit other user
behaviors such as occasional file reuse after a long period of inactivity.

Fortunately, long-term benchmarks can be built from the short-term benchmarks men-
tioned in Section 4.1. Rather than running the benchmark programs alone or in small
groups, though, long-term benchmarks run hundreds or thousands of instances of the
same programs, possibly supplying different parameters for each run. This is done by a
“master” program that controls the execution of all of the micro-benchmarks.

In addition to the usual issues of setting parameters appropriately, the master program
may also need to throttle the execution of the benchmark suite. For example, a batch job
that normally takes 200 minutes might take only 180 minutes because of improvements
in the mass storage system. Rather than leave the machine idle for that period of time,
the master benchmark coordinator should run the next benchmark “job.” Of course. not
all benchmarks need such throttling — it is unlikely that a human being will want to
come to work earlier just because she finished a few minutes early the night before.
Thus, the benchmark coordinator only throttles batch jobs, leaving the programs model-
ing human behavior unaffected. While this may not accurately reflect reality (people may

523

actually do more work with a more responsive system), the question of gauging the
changes in human response time are beyond the scope of this work.

Because of the length of time necessary to run a long-term benchmark and the expense of
setting up and maintaining a system for the weeks necessary to complete its run, it is
likely that most long-term benchmarks will be run on simulations of a mass storage sys-
tem rather than on real hardware, as will be discussed in Section 4.3.

4.3 Running the Benchmarks

A major concern with a benchmark suite is the method used to run it. CPU benchmarks
are simply run as programs, either individually in or in a group. The results of running
the benchmark are the time taken to complete it and the amount of work the benchmark
program did. A similar principle applies to file system and disk benchmarks because
their behavior can be encapsulated in either one or a small group of programs.

Mass storage system benchmarks follow the same general guidelines but on a different
time scale. Certainly. some benchmarks will consist of a single program or a small group
of programs that finishes within a few hours. Since these benchmarks will model indi-
vidual programs. they must intersperse “computation” with requests for file data. This
presents a problem, however — a mass storage system’'s performance should not be de-
pendent on the computation speed of its clients. To address this problem, benchmarks
will avoid computation as much as possible, focusing on file 1/0. Benchmarks will thus
often be of the form “transfer all of this data, and then do nothing with it.” While this
format removes the effect of a slower CPU, it allows the file system to perform
“optimizations™ by not actually fetching or storing the requested data. This can be pre-
vented by writing files with pscudo-randomly generated data, reading them back in. and
checking the results by either using the same generator or computing the digital signature
tu, the file and ensuring that it matchics that computed for the original.

Workload generators that may ron for many days present a difterent set of problems. It a
system crashes in the middle of a one hour benchmark, the program can just be rerun
from the start. This is not practical for benchmarks that may run for more than a month
(though it may encourage mass storage system software vendors to improve the quality of
their code...). Instead. the workload generator may be restarted so it begins with the next
request after the last one that completed successfully. Of course, such an outage will ad-
versely affect overall performance, since the time spent fixing the system counts towards
the total time necessary to run the benchmark.

4.4 Renchmark Customization

Running the benchmark programs may require customization in the form of providing the
appropriate calls to open. read. write. close, and perform other operations on files and di-
rectorics. To facilitate customization. the benchmark suite uses a standard library across

524

all programs to access the mass storage system. This library can contain real calls to a
storage manager. as would be required for short-running benchmarks. or it can contain
calls to a model of the storage system that returns appropriate delays. Since the interface
to the storage system is localized to a single file, the benchmark suite can easily be ported
to new architectures by modifying that library file.

Localizing the intertace to a single file allows benchmarks to be widely distributed. and
lessens the ability of manufacturers to “cheat”™ on the benchmarks by reducing the
changes they may make to the benchmarks. It also facilitates the development of new
benchmarks, since the programs may call a standard interface rather than requiring a
custom interface for each system. It also encourages the development of a standard sct of
capabilitics for mass storage systems because “special™ functions are not exercised by the
benchmarks and will not improve their performance. While this may sound restrictive. it
will actually benefit users by ensuring that they will not need to modity their programs to
run efficiently on different mass storage systems.

5. Evaluating the Benchmark Progiams

The true test of benchmarks is their ability to predict system behavior: thus, we plan to
test our benchmark suite on several systems to gauge how well its results match the actual
performance of working systems. Because the designs presented in this paper are very
preliminary. we expect that several rounds of benchmark tuning will be necessary hetore
the suite is ready for wider distribution.

The basic testing method is similar to that of benchmarks in other areas: obtain perform-
ance measures from the benchmark by running it on several systems. and compare the
results with the actual performance of the systems. This exercise is not as simple as it
may scem. however, because no two mass storage systems have the same workload pat-
tern. For a fair test. it will be necessary to select the most appropriate benchmark mix for
a system without knowing in advance what performance to expect. Thus, our final test
will be to run the benchmark on one or more systems before measuring performance and
looking tor correlation between predicted performance and real performance.

6. Future Work

The work on mass storage system benchmarks presented in this paper is still in its very
carly stages. By presenting these ideas to the mass storage system community at this
point. we hope to get valuable feedback and direction for the construction of this bench-
mark suite. In particular. we hope that mass storage system users will contribute repre-
sentative codes to be added to the collection.

Our first goal is to produce source code for several of the benchmarks mentioned in the
paper and run them on different storage systems including workstation file servers as well
as multi-terabyte tertiary storage-backed storage systems. Using the results, we plan to

525

refine our benchmarks, producing a set of a dozen or fewer programs that generate
workloads representative of those seen in production mass storage systems.

We are also building a simulation model of mass storage systems to allow the running of
long-term benchmarks. When this model is complete, we will be able to examine long-
term effects such as the tradeoffs between different file migration algorithms and per-
formance gains from different sizes of disk cache for tertiary storage. Using the bench-
mark suite rather than a particular workload will allow us to come up with general
guidelines for building mass storage systems rather than the site-specific advice common
in the field today.

7. Conclusions

This paper presented design principles for building a benchmark suite for a mass storage
systems with capacities ranging from tens of gigabytes to petabytes. The benchmark pro-
grams will be synthetic; while they will be based on access patterns observed on real
mass storage systems, they will not include real code from actual user. Some of the
benchmarks will generate access patterns similar to those of individual programs, typi-
cally requiring less than a day to run. Others will mc .el long-term access by many users
to mass storage over periods of many days. Both types of benchmarks will include pro-
grams that mimic "real world" access patterns as well as others that stress the system to
find its limits, since both factors are important to mass storage system users. Using feed-
back from users of mass storage systems as well as vendors, it is our hope that this
benchmark suite will become a standard that will ease the process of comparing many
different options in storage system design.

References

1. A. Park and J. C. Becker, “IOStone: A synthetic file system benchmark,” Computer
Architecture News 18(° June 1990, pages 45-52.

2. P. M. Chen, and D. A. Patterson, “A New Approach to [/O Performance Evaluation -
Self-Scaling 10 Benchmai«s, Predic:>d I/0 Performance,” Proceedings of the 1993
SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Santa Clara, CA, May 1993, pages 1-12.

3. J. H. Howard, M. L. Kazar, S. G. Menes, D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham and M. J. West. “Scale and Performance in a Distributed File System.”
ACM Transactions on Computer Systems 6(1), February 1988, pages 51-81.

4. W. Norcott, I0zone benchmark source code, version 2.01, posted to
comp.sources.misc, October 30, 1994. Available from
ftp://www.cs.umbc.edu/pub/elm/iobenchmarks/iozone01.

526

he

T. Bray, Bonnie benchmark source code, 1990. Available from
ftp://www.cs.umbc.edu/pub/elm/iobenchmarks/bonnie. sh.

E. L. Miller and R. H. Katz, “An Analysis of File Migration in a UNIX Supercomput-
ing Environment,” USENLX - Winter 1993, San Diego, CA, January 1993, pages 421-
434,

D. W. Jensen and D. A. Reed, “File Archive Activity in a Supercomputer Environ-
ment,” Technical Report UIUCDCS-R-91-1672, University of Illinois at Urbana-
Chamgaign, April 1991.

E. L. Miller and R. H. Katz, “Input/Output Behavior of Supercomputer Applications,”
Proceedings of Supercomputing "91, Albuquerque, NM, November 1991, pages 567-
576.

D. Kotz and N Nieuwejaar, “File-System Workload on a Scientific Multiprocessor,”
IEEE Parallel and Distributed Technology 3(1), Spring 1995, pages 51-60.

10. M. Berry, et. al, “The PERFECT Club Benchmarks: Effective Performance Evalua-

tion of Supercomputers,” /nternational Journal of Supercomputer Applications 3(3),
1989, pages 5 - 40..

11. Transaction Processing Perf. Council. Details available from http://www.tpc.org

12. E. L. Miller, Storage Hierarchy Management for Scientific Computing, Ph.D. disser-

tation, University of California at Berkeley, April 1995. Also available as technical
report UCB/CSD 95/872.

527

NEXT
DOCUMENT

Queuing Models of Tertiary Storage! . TE

Theodore Johnson
Dept. of CISE, University of Florida
AT&T Research
ted@cis.ufl.edu

Abstract

Large scale scientific projects generate and usc huge amounts of cata. For example, the NASA
EOSDIS project is expected to archive one petabyte per year of ra v satellite data. This data is
made automatically avatlable for processing into higher level data products and for dissemination
to the scientfic community. Such large volumes of data can only be stored in robotic storage
libraries (RSLs) for near-line access. A characteristic of RSLs is the use of a robot arm that
transfers media between a storage rack and the read/write drives. thus multiplying the capacity of
the system.

The performance of the RSLs can be a criticai limiting factor of the performance of the archive
system. However. the many interacting components of an RSL make a performance analvsis
difficult. In addition. different RSL components can have widcly varying performance
characteristues. This paper describes our work to develop performance modcls of a RSL. W first
develop a performance model of a RSL in isolation. Next, we show how the RSL model can be
incorporamcd into a queuing network model. We use the models 1o make some example
performance studies of archive systems.

The models described in this paper. developed for the NASA EOSDIT aroject. are implemented
in C with a well-defined interface. The source code, accompanying documentation. and also
sample JAVA applets, are avintable at

http://www.cis.ufl.edu/--ted/
Introduction

Large scale scientific projects generate and use huge amounts of data. For cxample. the NASA
EOSDIS project is expected o archive one petabyte per year of raw satellite data |KBCHY4].
This data 1s made automaucally available for processing into higher level data products and tor
dissemination to the scientific community (see. for example, the reports in [ESDIS]). Automatic
management of such large data scts requires the use of tertary storage, typically implemented
using robotic storage libraries (RSLs). In addition to EOSDIS and related projects. many
organizatiors and scientific disciphnes make use of mass storage archives (for example high
energy physics [Lu9S} and digital libraries [CoHu93)).

! This research was tunded hy a grant trom NASA #10-77556

529

The database community has also become interested in the wuse of RSLs
[DSF94,CHL93,Sequoia2k,Sa%95]. This interest is motivated in part by scientific database
problems such as EOSDIS. Another motivation for integrating RSLs with on-linc database
systems is to facilitate data warehousing.

Tertiary storage is required when the managed data set becomes 0o large to store economically
with conventional magnetic disk devices. The point at which tertiary storage becomes neccsary
is an economic tradeoff. Currently. it seems that tertiary storage is needed (o manage more than a
terabyte of data. A RSL is much slower than magnetic disk storage. and data access latencies can
run into minutes even on unloaded systems. However, RSL-rcsident data can be accessed
automatically. Hierarchical storage management systems, such as Unitree, Filestore, and Amass,
provide the illusion that the RSL is an extension of the file system. Access to archived data
incurs a short delay. The storage capacity of a data system can also be increased by using off-line
storage -- i.¢. tape racks with human operators. Access latencies with off-line storage can be very
large, ranging into hours or days. but the data storage capacity is imited only by the size of the
warehouse that one can afford to rent. Since RSL provides data volumes and access latencies
between those provided by on-line and off-line storage, it is often referred o as near-line
storage. A cost analysis of on-line, near-line, and off-line archives can be found in [KGT90).

A characteristic of RSLs is the usc of removable media and a robot arm. The removable media
(e.g. magnetic tape, optical disk, ctc. are normally located in a storage rack. To service a request
for a file, the robot arm fetches the proper media from the storage rack and delivers it 10 a
read/write drive. The media is accessed in the normal way to fetch the file. Finally, the media is
returned to the storage rack. The capacity of RSL is the product of the capacity of the media and
the size of the storage rack. Recent magnetic tapes have a data capacity on the order of 10
Gbytes, and storage rack sizes range from 10 to 1000 media (approximately). The ume to fetch
and mount the media which holds the requested file can be a large component of the access
latency.

The performance of the RSLs can be a cntical limiting factor of the performance of the archive
system. Given the high data request rates expected for EOSDIS, atiention to handling these
requests efficiently is critical | KBCH94,ESDIS]. However, the many interacting compcnents of a
RSL make a performance analysis difficult. In addition, dificrent RSL components can have
widcely varying performance charactenistics.

This paper describes our work to develop performance models of tertiary storage. We first
develop a performance model of a RSL in isolation. Next, we show how the RSL model can be
incorporated into a queuing network model. Finally, we model fork-join jobs to study the
tradeoffs of using multiple devices. We use the models to make some example performance
studies of archive systems.

530

The models described in this paper, developed for the NASA EOSDIS project, are implemented
in C with a well-defined interface. The source code, accompanying documentation. and also
example JAVA applets, are available through:

hap:/twww_cis.ufl.edu/~ted/
Previous Work

Considerable work has been donc to develop performance models of mass storage. Rahm
{Rh92] presents a simulation study of a database system with a hicrarchy of storage devices.
Ramakrishnan and Emer [RE89] present a qucuing model of a chienVserver file system.
Drakopoulos and Merges [DM92] present a closed queuing model of a client/server storage
system with hierarchical storage. Kelly, Haynes, and Emest [KHE91] discuss a benchmark for
network storage systems. Hauser, Rivera, and Thoma [HRTY1] discuss the performas.ce of their
networked WORM server.

Some work has becn done to characterize the performance of mass storage devices. Waters
{Wa74) presents a validated model of seek times in hard disk drives. More recently, Rucmmler
and Wilkes [ReWi94] present a detailed model of 2 modern disk drive, and discuss the
difficulties inherent in /O modecling. Christodoulakis and Ford [CF88] and Christodoulakis
[Ch87] prescent analytical performance models of optical drives. Chinnaswamy [Ch92] presents
performance models of a streaming tape drive to investigate the benefit of a cache.

Models of disk arrays resemble the models presented in this paper in several aspects. Burkhard,
Claffy, and Schwarz [BCS91] present a simulation study of a disk array scheme. Lee and Katz
{LK93]} and Yang. Hu and Yang [YHY94] present at.alytical models of disk arrays. Chen et al.
[CLGKP94] and Thomasian [Th95] present surveys of research in RAID modeling.

Several authors have modcled a RSL. Butturini {Bu83) presents the results of a simulation study
of an optical disk jukebox system. Hevner [He8S] presents a model of an optical jukcbox that is
used for a database application. Howard [Ho92] gives a performance model for data duplication
from an archive. Finestead and Yeager {FY92] give performance mcasurements of a Unitree file
server at the National Center for Supercomputer Applications. Hull and Ranade {HRY3] present
measurements of tape loading and unloading, and of data throughput, in a tape silo. Bedet et al.
[Be93] discuss the results of a detailed simulation model of the Goddard DAAC. Pentakalos,
Menasce, Halem, and Yesha [PMHY95] develop a queuing nctwork model that incorporates a
RSL. Daigle, Kuehl, and Langford [DKL90] present a queuing model of an optical disk jukcbox.
Golubchik, Muntz and Watson [GMW95] analyze tape striping on an RSL.

The analyses most closely related to the one in this paper are [PMHY95,DKL90,GMWYS|. The
analysis in [DKL90] gives a detailed model of access times to data on an optical plauer.
However, only one drive is permitted and contention for the robotic arm is not modceled. In
[PMHY95], the authors present a detailed model of a data center, incorporating RAID disk
caches and user computation. However, the authors assume that contention for the drives in the

531

RSL is negligible, and model the RSL as a delay server. Contention for the robotic arm duce to
batch arrivals is modeled in [GMW95], but contention between jobs is not modeled.

The contnibution of this work is to present a validated model of a RSL that accounts for batch
arrivals, multiple drives. contention for the robotic arm, and realistic operation. We show how
the model can be used to make a variety of data layout and device comparison studics. Finally,
we show how to incorporate the RSL model into a queuing network model.

Model of a Kobotic Storage Library

Our model of a RSL is illustrated in Figure 1. Previous studies of mass storage archive log files
(see, for example, [J095a,DKL90)) indicate that requests to a mass storage device come in
batches. This study has been corroborated by our studies of access to preliminary versions of the
EOSDIS archives (the VO archives) [Bedet96. DunhamNonh96]. As a result, our RSL model
uscs batch arrivals.

drives

>— robot

L'<
storage rack
— NS E—

10b arrval

000

Figure 1

A user requests that f files be loaded into on-line storage. and these files are distributed over m
media in the RSL. The request is satistied when every file has been loaded into on-hine storage.
So, a user request consists of m jobs. cach of which must be completed before the reguest in
finished. A RSL consists of ny drives, cach of which can read or write any of the media in the
RSL2, a storage rack containing the removable media, and a robot arm for transferning the media
between the drives and the storage rack. The model of a RSL is illustrated in Figure 1.

2 In some installations, a subset ot the dnives are designated as read-only or write-only . We will address

this comphication n g later verston of the model

S <&

robot mount e 1 Jtilet filen fig n rewind | robot
fetches { time seek {uranster} @ | seek] transter | time relums
the tme tme time | tme the
media meda

transfer is finished l

Figure 2

The steps taken by a drive in retricving files from a media is illustrated in Figure 2. When a
request arrives, its jobs arc placed in the job queue. If there arc jobs in the RSL queuc and a drive
is idle, the drive allocates one of the jobs for exccution. First. the robot arm fetches the
appropriatc media from the storage arca and loads it into the drive. If the robot arm is busy
serving other drives, the drive must wait for service. After the media is brought to the drive. it
must b¢c mounted. For cvery file of intcrest on the media, the drive must seek to the start of the
file, spend a settling time for precise positioning and opening communications channcls. and then
transfer the file to on-line storage. After all files have been transferred. the media is rewound and
returned 0 the storage rack by the robot arm. However, the job is linished once all of the files
have bheen fransferred.

In the next section, we briefly discuss our analytical performance model of a RSL system (a4 more
detailed discussion can be found in [Johnson96]). In this preliminary model, we make the
following assumptions:

o Requests arrive in a Poisson process.

e The distribution of the number of media per request and the number of files per
rcquest must be specified. In the model discussion, we assume that the number of
media per request and the number of files per request have geometric distributions.
These can be replaced by user-specified distributions (e.g. empirically determined).
but at the cost of requiring the user to specify more parameters.

533

e The RSL can contains one robot arm. The robot arm can access every media, and
every drive.

e Every drive can read and write every media.
® Requests (i.e., jobs) are serviced first-come-first-serve3.

e The service for a request is completed when the last file of the batch has been read
(written).

e Network or communication channel contention is not significant?.

® Service times at the drives are independent.

Analytical model

A RSL presents many difficulties for performance modeling, including batch arrivals, multiple
servers, derived parameters, and interacting components. The primary component of the RSL
model, the M"/G/c queuc, has been studied and solved in the literature [Tijms94). Solving the
actual M"/G/c queue is intractable, so the solution technique is t interpolatc between the results
for the M"/M/< queue and the M*/D/c quecue using the cocfficient of variation of the scrvice time
as the interpolation parameter. Because of the potential complexity of the batch arrival
distributions, we do not use explicit (i.e., generating function) formulas. Instead, we numerically
solve the recurrence equation that defines the state occupancy probabilities. If the occupancy
probabilities of the first N states must be computed for an crror bound of ¢, then solving the

M*/M/c queue requires O(Nz) time and solving the M. ™/c queuc requires O(N’) time.

Fortunately, we can take advantage of the nature of the problem to speed up the solution times.
The state occupancy distributions eventually converge to a geometric distribution (1.€., py = g pw.
1). Therefore the recurrence equations only need to be solved up the first Njp states, and the
remainder can be computed using the 1y ratio (or perhaps the performance metrics can be

computed directly). Ny depends primarily on the distribution of the size of the batch arrival.
Fortunately, the batch arrival distribution will have a short tail -- one cannot request that more
media than exist in the storage rack be mounted, and usually only a few media are required to

3 A simple optimization is to load files for all requests once a media has been mounted. We assume this
situation has a negligible impact on performance in this model.
4 Potential model users indicated that communication channel contention is not a problem for their systems.

Communication contention can be incorporated into the seek times or mount times using standard techniques [Ka92).

534

satisty a request. By using these tricks, we implemented batch queue solvers that are fast cnough
to be incorporated into a higher level model which calls them many times.

We model the RSL as an M"/G/c queue -- that is, a queuc with Poisson batch arrivals, general
service time distribution, and ¢ servers. The parameters of a M"/G/c queue are:

e Armval rate

e Mean service time

e Coefficient of vanation of service time
e Batch size distribution

e Number of servers

All but the service time distribution arc input parameters, so our analysts is focused on how to
compute the expected service time, Eg and the coefficient of variation cvy. To compute quecue
length distributions and expected waiting times properly, we need to compute the time that a
drive is unzble to serve other jobs per media that it serves. This period includes the time to fetch
the media, mount it, seck to cach file, transfer each file, rewind and cject the media, and return it
to the storage rack. We will incorporate the time to return the media as part of the media fetch
time, so we have:

drive service = (robot ferch)+(mount time)+(seck time)+(transfer time)+(rewind time)

Since we are interested in the response time of the last job in the batch to finish (i.c.. instcad of
the average job), we nced to modify the response time computation. An cfficient algorithm for

compt *ing the response time of the last job in the batch is given in {Ka92). The modificd M“/G/c
queue provides the batch response time Rypaen, the drive utilization 1y, and pg0),....,p(ny-1). the
probability that 0,... , ng-1 servers arc busy on a request arrival (where ng is the number of drives
in the RSL). The effective drive service time (and p4(.)) depends on the robot response time,
which in tum depends on pg4(.). Finally, the job is finished when the last file has been transierred,
there is no need to wait for the tape rewind. Therefore:

Rrequest = Ryatch - Erwd

535

For more information about thc derivations in the model. please sce our other report
{Johnson96].

Interfaces
The RSL solver consists of a number of modules, mostly consisting of procedures to solve

M'/G/c queue. Figure 3 shows a map of the procedure calls. The functions rslsolve and
rslsolve_f are the entries to the RSL solver.

rsisolve rslsolve f

W mxgc:/ \

p_mxg1t w_mxgcf

w_mxmcg w mxdcg / \
‘ w_mxdct w_mxmct
servtime_mg servtlme -dg p_mxdif erlangtk_fit

p_mxmef p_mxdct

servtime_df servtime_mf

<Blas>

Figure 3
The prototype fer ihe rsisolve function is

vo.d slsolva(float 1,float fr,float mr.int nd,int nr,float,Etr,
float Vir,float tmt.float Xb,float Esz,float Vsz,float Erwd,
float Vrwd,float (* seekfun)(int,float*,float*),int ncust,
float *drho, float *dR, float *dW. float* dRv, float *dWv,
float *rrho,float *rR, float *rW,float *dm, float *dV,
Noat *bascmu,float *drbusy.int DEBUG)

536

wherc the input parameters are:

lis the amtval rate.

{r is the average number of files per request.

mr is the average number of media per request

nd is the number of drives in the RSL.

nr is the number of robot arms.

Etr is the is the average robot fetch time.

Vir is the variance of the robot fetch time.

tmt is the media mount time.

Xb is the transfer rate.

Esz is the average file size.

Vszis the vanance in the file size.

Erwd is the average tape rewind and unmount time
Vrwd is the variance in the average tape rewind and unmount time.
moments of the scek ume, given that nfiles are loaded.
DEBUG is sct true to print a trace.

And the output parameters arc:

drho is the dnive utilization

dR is the batch job response time

dW is the batch job waiting tme

dRv is the variance in job response time

dWv is the variance in job waiting time

rrho is the robot utilization

rR is the avg. robot response time

rW s the avg robot waiting time

dmu is the drive scrvice time

dV is the variance of drive service

basemu is the base drive service ime

drbusy is an array where drbusy|i] is the long-term prohability that 7 drives are busy. 0
<=1 <= nd-1 (drbu. ; must point to the storage location for the array when the call is
made).

The rslsolve function assumes that the number of media per request and the number of files per
media have a gecometric distribution. In the rslsolve_f tunction. the user supplies the distribution
of the numbcer of media per request, but the number of files per media has a geometric
distribution. The prototype for the rslsolve_{ function is:

537

void rslsolve_f(float 1,float fr, int nd,int nr,float,Etr,

float Vtr,fioat tmt,float Xb,float Esz, float Vsz,float Erwd,
float Vrwd, float *bd, int bmax,

float (* seekfun)(int,float* float*),int ncust,

float *drho, float *dR, float *dW, float* dRv, float *dWv,
float *rrho,float *rR, float *rW,float *dmuy, float *dV,
float *basemu,float *drbusy,int DEBUG)

where
e bd is an array where bd|i] 1s the probability that a request requires I media.
¢ bmax is the largest number of media required to service a request.
Validation Study

We wrote a simple RSL simulator. The simulation accepts batch arrivals, requires that a robot
unload and fetch a media before a drive can service a job, handles multiple drives, and accounts
for media rewind times. Thc drive scrvice time, except for the robot arm component, is sampled
from an Erlang distribution.

We uscd the following values of the parameters in the validation study:
o fr=20.
e bd[.] : Geometric distribution.
e nd=4.
¢ Etr = 10.0 seconds.
e Vir=10.0.

e tmt = 10.0 seconds.

X_b = 1.0 Mbyte/sec.

We ran four sets of experiments to test the model. In the “large files” experiments, Esz=50,
Vsz=100, Tfs=50, and Tsl=1. In the ““small files" experiments, Esz=5, Vsz=10, Tfs=20, and
Tsl=2. We tested the model with mr=2 and mr=6.

538

The results of the validation study are shown in Figures 4 through 7. In cach case there is close
agreement between the analytical and the simulation models. The most difficult case is when the
files are small and distributed over an average of six media, because the robot fetch times
constitute a large portion of the drir - service times (about 22% of the total drive service time
when the robotic arm waiting time is added). However, the analytical model is accurate cnough
to predict response times and drive utilizations. Charts comparing analytical and simulation
drive utilizations are shown in Figures 8 and 9.

Performance Study

A performance model is useful for studying implementation alternatives. In this section, we
present two sample performance studies based on the RSL model.

Clustering

Conventional wi “om holds that striping or declustering is necessary for obtaining high transfer
rates from tertiary storage (by making use of parallel /O). So, one should spread the files of a
typical request around as many media as possible. Conventional wisdom also holds that
swapping media is a source of great inefficiency in RSL access, so that one should try to cnsure
that the files of a typical request are placed on as few media as possible.

Neither argument is convincing, unless one has a predictive performance model. We ran the
“small files” cxperiment with mr ranging between 1.2 and 8. In Figure 10, we plot the response
time of a request against the number of media per request for varying arrival rates (A similar
chart can be found in an analysis of tape striping [GMW95]). For low arrival rates, sctting mr to
approximately nd produces the best results. When lambda=.0001, sctting mr =3 results in a 22%
lower response time than sctting mr=1.2. For high arrival rates, setting mr=2 gives lower
response times than other choices.

In Figure 11, we plot the drive utilization against mr for varying arrival rates. Increasing mr
causes a linear increase in the drive utilization. As the arrival rate increases, it becomes less
likely that all nd drives are available to service the request. So, distributing the files over a
smaller number of media reduces queuing delays. If the demand on the RSL is expected to be
close to the device's capacity, then mr should be small to increase the maximum throughput of
the device.

The question of whether to cluster or decluster the files on the media can be summarized as:

o If the expected drive utilization is low [PMHY95] and fast response is important. then
declustering can be a good strategy. However, the decrease in transfer times must be
larger than the increase in queuing delays.

o If high throughput is important, clustering is a good strategy.

539

Number of Drives

Many RSLs allow the user to install a ranging number of drives. Adding drives to a RSL can
improve the performance of the device. But after a threshold. adding drives does not
significantly improve performance.

We ran a sample study using the ““small files” parameters and four media per request. In Figure
12, we plot the response time versus the arrival rate for a number of drives varying between 2
and 8. Adding a drive significantly improves performance up to four drives. but gives less benefit
after four drives. In Figure 13, we plot the drive utilization agzinst the arrival rate. Adding a
drive to the RSL increases the capacity of the device. Howcver, the robot arm will start to
become a bottleneck. This can be seen in the non-lincar increasc in utilization of some of the
carves, for example for nd=8.

Computing Response Times for Particular Jobs

The rslsolve function computes the response time for an average request. However, it is ofien
necessary to compute the expected response time for a particular request (with a particular
number of media w0 be accessed. cte.). The servtime* routines use information compu. | by
rslsolve to compute response times for particular requests. The prottype for the serviime_mf
function is:

void servtime_mf(float* bd,floa’ bmax. float* pr,float m, int ¢,
float* Eserv, float* M2serv)

where the input paramcters ase:

bd - batch arrival distribution.

bmax - largest batch arrival.

pr - prik] is the probabhility that k servers are busy. () <=k < nd
m -SCTVice ratc.

¢ - number of servers.

And the output paramcters are:

e Escrv - average request service time.

540

e M2scrv - 2nd moment of request service time.

The function serviime_mf{ assumcs that the service time has an cxponcntial distribution. A
similar routine, servtime_df, assumes that the service time is deterministic. Res: lis tor general
service time distributions arc obtained through interpolation.

We consider the following application. A large scale data center is Jikely to have multiple RSLs.
The devices might be acquired to handle #ata center growth, or multipic small devices might be
less expensive than a single large device. In this section, we discuss ar approximation to the
request response time when the request is served by multiple RSLs.

If a request is services by two different RSLs, the request is finished when both devices have
completed their part of the request. Since we assume that requests are independent, we need to
analyze a fork-join queue with interfering traffic. Thomasian and Tantawi [ThTa94.Thy6} have
found that a good approximation to the response time of the fork-join job is to take the maximum
of the response times of cach device (we assuruc an Erlang distribution on the responsc time
when computing order statistics).

For an experiment, we applicd the “large files” workload to two RSLs, with both reeciving the
same arrival ratc. We considered a request that required files from six media. In Figure 14, we
plot the response time of this request against the arrival rate, and varied the number of media
that must be loaded from cach device. The results show that when the load on the tertiery storage
devices is low, it is better to divide the request evenly between the two devices. But. when the
load is high it is better to use one device only. The reason for this result is that spliting the
request between the two devices provides parallel VO, but if the request load is high. then the
variance in the response times becomes large. Thus, the decision to allocate files so that most
requests use only one device or that most requests use both devices depends on the expected load
placed on the devices.

Queuing Network Model

A mass storage data system consists of many components in addition to the RSLs. Typical
hicrarchical storage management systems use a database to track file 10 media location mappings,
and maintain a sizcable staging and caching arca. The computing centers that use tertary storage
often have large scale computing tasks. For example, EOSDIS archives must perform product
generation o filier, correct, remap. and fuse satellite images (see the reports in JESDIS|. und also
the discussion in |PMHY95)).

To capture the effeets of RSLs in computing systems, we need (o integrate the RSL model into a
quecuing network model. The typical approach for incorporating devices with unusual respunse
time characteristics into a queuwng network model is 1o use mean value analysis (MVA), and
develop a MVA recurrence for the deviee in guestion [Kav2]. However, it s difficult to Adevelop

541

such a recurrence even for muluple server devices. Therefore, we take the approach of
integrating the open RSL queue into a MVA model.

Although the RSL model solver is fast (about 2 seconds of execution time), an exact MVA
solver requires an iteration over every possible population vector. If the population is large and
there are many job classes. solutinn times become intolerably large. We instead used an
approximate MVA solver, making use of Schweitzer's approximation on queue lengths and
Bard's approximation for the load dependent servers [Ka92]. The approximate MVA solver built
using these approximations compute the throughput at exch iteration. which we use as the arrival
rate at the RSL (after scaling by the visit ratio).

The function that sclves the queuing network model is closedqn_rsl. Its prototype is:

int closedgn_rsl(int M, int K, double D{MaxM}{MaxClass], doubie* N,
int* servtype, double alpha[MaxLD][MaxPop], struct rslparamstr* rslparam,
double visit{fMaxM][MaxClass].

double lam_outfMaxClass). dozble Rloc[MaxM][MaxClass}, double* U)

where the input parameters are:

M - number of servers.

K - number of classes.

D - D[k]ir] is the service dcmand of a class r job at scrver k.

N - Nir] is the number of customers of class r.

servtype - serviype[k] encodes server k's type, and possibly points to additional
parameters.

alpha - »tphall][*] are the service rate multipliers of load dependent server 1.

rslparam rslparam{l] is a structure containing the service parameters of RSL 1.

visit - visit{k][r] is the number of times a class r job visits server k.

And the output parameters are:

¢ Jlam_out - lam_out|r] is the throughput of class r jobs.
e Rloc - Rloc[k][r} is the residence time of a class r job at server k, per visit.
o U - U[k] is the utilization of scrver k.

Incorporating an open queuing model into a closed queuing network can introduce inaccuracies
(we implemented some heuristic corrections). To test the accura-" of the approximate MVA
model, we simulated a computer syster -ith a RSL and three ou.er queuing devices. The
requests to the RSL used the “lazge fi'~" . aload, and every customer submits a single request

542

1o the RSL per task execution. There are three queuing devices, with per-task service demands of
250, 400, and 350 units of work. respectively.

We plot the response time of the RSL against the number of customers in the system in Figure 15
for a sleep time of 5000 and 900X). The model is accurate even for a small number of customcrs.
However, the accuracy declines when the number of customers is large and the sleep time is
small. This problem is occurring because onc of the queuing devices is saturated, and the
approximate MVA solver becomes inaccurate in these situations.

Conclusions

We have developed an analytical model of a robotic storage library and validated the model by
comparison to simulations. The RSL consists of a storage rack for removable media, a sct of
drives that read and write the media, and a robotic arm that transfers the media between the
storage rack and the dnives.

The RSL model can be used for many useful studies. We provide examples of data layout and
device sclection studics. A RSL is used as a part of a larger computing system. We incorporated
the RSL solver into an approximate MVA queuing network model, and validated the modcl by
comparison to a stmulation.

We have developed this model to support NASA's EOSDIS on-line archiving efforts. Future
work will be directed towards refining the model and providing studies useful to archive sites.
This work includes further model refinements, and encapsulating the queuing model solvers into
Java applets that perform particular analyses.

Acknowledgments

We'd like to thank Ben Kobler and Chris Daly of NASA GSFC, and Bob Howard of Hughes for
their comments, ami Alex Thomasian for his advice regarding fork-join jobs.

Bibliography

[Bedet96] T. Johnson and J.J. sedet. Analysis of the access patterns at the GSFC Distributed
Active Archive Center. In Proc. Fifth Goddard Conf. on Mass Storage Svstemv and
Technologies, 1996

[Be93] J.J. Bedet et al. Simulation of a data archival and distribution system at GSFC. In
Goddard Conference on Mass Storage Systems and Technology, NASA CP 3262, pages 139-
160, 1993.

543

[BCS91) W.A. Burkhard, K.C. Claffy, and TJ.E. Schwarz. Performance of balanced array
schemes. In Mass Storage Svstems Symposium, pages 45-50, 1991,

{Bu88] R.S. Butturini. Performance simulation of a high capacity optical disk systcm. In Mass
Storage Systems Symposium, pages 147-153, 1988.

[CHL93] M J. Carcy. L M. Haas. and M. Linvy. Tapes hold data too: Challenges of wples on
tertiary store. In Proc. ACM SIGMOD, pages 413-418, 1993,

[CLGKPY4] M.P. Chen, EK. lec. G.A. Gibson, R.H. Katz. and D.A. Paucrson. RAID: High-
performance reliable secondary memory. Computing Survevs, 26(2):145-185, 1994

[Ch92] V. Chinnaswamy. Analysis of cache for streaming tape drive. In Proc. NASA Goddard
Conference on Mass Storage Svstems and Technology, NASA CP-3198. Vol. I, pages 299-310,
1992.

[Ch87] S. Christodoulakis. Analvsis of retrieval performance for records and objects using
optical disk technology. ACM Transactions on Database Svstems. 12(2):137-169. 1987.

[CF88] S. Christodoulakis and D.A. Ford. Pcrformance analysis and fundamental performance
tradeofls for clv optical disks. In ACM SIGMOD, pages 286-294. 19K8.

[CoHu93] R.A. Coynce and H. Hulen. Toward a digital library strategy for a national information
infrastructure. In Proc. 3rd NASA Godddard Conf. on Masy Storage Systems and Technologies.
NASA CP-3262, pages 15-18. 1993.

[DKL90] J.N. Daigle, R.B. Kuchl. and J.D. Langford. Qucuing analysis of an optical disk
jukebox-based office system. JEEE Trans. on Computers. 39(6):819-828. 19Y91).

[DSF94]). Dozier. M. Stonebraker. and J. Frew. Sequoia 2000: A next-generation information
system for the study of global change. In Proc. 13th IEEE Mass Storage Svstems Svmposium.
pages 47-53. 1994

[DMY2]) E. Drakopoulos and MJ. Merges. Performance analysis of client-scrver storage
systems. 1EEE Transactions on Computers, 41(11):1442-1452. 1992,

[(DunhamNorth96] J. Dunham and B. North. EOSDIS statisucs collection and reporting system,
1996. Available by anonymous FTP at eos.nasa.gov/EosDis/Daacs/Statistics.

[ESDIS] ESDIS document catalog. hup:/spsosun.gste.nasia.gov/ESDIS _Docs html.

544

[FY92] A. Fincstcad and N. Yeager. Performance of a distributed superscaler storage server. In
Proc. NASA Goddard Conference on Mass Storage Svstems and Technology, NASA CP- 3198,
Vol. 11, pages $73-580, 1992.

[GMWJ5] L. Golubchik, RR. Muntz, and R.W. Watson. Analysis of striping technigues in
robotic storage libranies. In Proc. 14th IEEE Mass Storage Systems Symposium, pages 225-238,
1995.

(HRT91] S.E. Hauser. C. Rivera. and G.R. Thoma. Factors affecting the performance of a dos-
based WORM file scrver. In Mass Storage Systems Symposium, pages 33-37, 1991.

[He85] A R. Hevner. Evaluation of optical disk systems for very large database applications. In
ACM SIGMETRICS conference, pages 166-172, 1985.

(Ho92] K. Howard. High speed data duplication/data distribution - an adjunct to the mass
storagec equation. In Proc. NASA Goddard Conference on Mass Storage Svstems and
Technology, pages 123-133, 1992.

{HR93] G. Hull and S. Ranadc. Performance measurements and operational characteristics of
the Storage Tek ACS 4400 tape library with the Cray Y-MP EL. In Proc. NASA Goddard
Conference on Mass Storage Svstems and Technology, pages 111-122, 1993,

[Jo95a) T. Johnson. Analysis of the request patterns to the nssdc on-line archive. In Proc. 4th
NASA Goddard Conf. on Mass Storage Systems and Technologies, 1995.

[Johnson96] T. Johnson. An Analytical Performance Model of Robotic Storage Librancs. In
Performance ‘96, 1996.

[Ka92) K. Kant. Introduction 10 Computer System Performance Evaluation. McGraw Hill,
1992.

[KHE91] SM. Kelly. R A. Haynes. and MJ. Emest. Benchmarking & *work storage scrvice.
In Mass Storage Sy:tems Symposium, pages 38-44, 1991.

(KGT90] K.F. Klenk, J.L. Green. and L.A. Treinish. A Cost Model for NASA Data Archiving.
Technical Report 90-08, National Space Science Data Center, NASA Goddard Space Flhight
Center. 1990.

[KBCHY4] B. Kobler, J. Berbert, P. Caulk, and P.C. Hariharan. Architecture and design of
storage and data management for the NASA Earth Observing System Data and Informaton
System (EOSDIS). In Proc. 14th IEEE Mass Storage Systems Symposium, pages 65-78, 1995,

545

[LK93] EK. Lee and R.H. Katz. An analytic performance model of disk arrays. In ACM
SIGMETRICS, pages 98-109, 1993.

[(Lu9S]) L. Lucking. Managing and serving a multi-terabyte data set at the Fermilab DO
experiment. In Proc. 14th IEEE Mass Storage Systems Symposium, pages 200-208, 1995.

[PMHY9S] O.1. Pentakalos, D.A. Menasce, M. Halem, and Y. Yesha. Analytical performance
modeling of hierarchical mass storage systems. Technical Report TR-CS-96-01. Dept. of
Computer Science, University of Maryland, 1995. A short version appears in the /4th IEEE
Mass Storage Symposium proceedings.

[Rh92] E. Rahm. Performance evaluation of extended storage architectures for transaction
processing. In ACM SIGMOD, pages 308-317, 1992.

{RE89] K.K. Ramakrishnan and J.S. Emer. Ferformance analysis of mass storage service
alternatives for distributed systems. JEEE Trans. on Software Engineering, 15(2):120-133, 1989.

[ReWi9%4] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. JEEE Computer,
27:17-28, 1994.

{Sa95] S. Sarawagi. Databasc Systems for Efficient Access to Tertiary Memory. In Proc. 14th
IEEE Mass Storage Systems Symposium, pages 120-126, 1995.

[Sequoia2k] Sequoia 2000 home page. htip://s2k-fip.cs.berkeley.edu:8(0MV.

[Th95]} A. Thomastan. Surveyors forum: High performance secondary memory. Computing
Surveys, 27(2):292-295, 1995.

[Th96) A. Thomasian. Approximate analyses for fork/join synchronization in RAID S§.
Computer Svstems: Science and Engineering, 1996. To appcar.

[ThTa%94] A. Thomasian and AN. Tantawi. Approximate solutions for M/G/1 fork/join
synchronization. In Proc. 1994 Winter Simulation Conference, 1994.

[Tijms94] H.C. Tijms. Stochastic Models: An Algorithmic Approach. Wiley, 1994.
[Wa74] S.J. Waters. Estimating disk seeks. The Computer Journal, 18(1):12-17, 1974.

[YHY94] T. Yang, S. Hu, and Q. Yang. A closed-form formula for queuing delays in disk
arrays. In Proc. Intl. Conf. on Parallel Processing, pages 11:189-192, 1994.

546

Two media per request, large files

Response time
1,400
. Analytical
1,200 Pad
/ Simulation
1,000 > e
€
800 -
. e /
.o ——
600
£
400
200
0 v 1 T T T T
0 0.0005 0.001 0.00t5 0.002 0.0025
Arrival rate
Figure 4
Two media per request, small files
Response time
300
Analytical
250 r
- Simulation
200 *
®
150 -
-
100
50
0 LA | v Y Y | T T T
0 0.002 0.004 0.006 0.008 0.01
Arrival rate
Figure §

547

Six media per request, large files

Rasponse time

2,500
[Analytical
2,000 Simulation
E . .
1,500 /
1.000
—
I
. —
500 1+ ————
0 T T v T v T v T
0 0.0005 0.001 0.0015 0.002
Arrival rate
Figure 6

Six media per request, small files

Response time

600
4 Analytical

500 l
] / Simulation
Kl L J

400
300 7/
200 /

100
0 '1 v T T v T v T -
0 0.001 0.002 0.003 0.004 0.005
Arrival rate

Figure 7

548

Six media per request, small files

Utilization
0.8
1 Analytical
0.7 pt
] / .
0.6 Simulation
' P M
0.5 /
0.4 /
0.3 /
0.2
0.1 /
0 ™ | p— ™ 2 T
0 0.001 0.002 0.003 0.004 0.005
Artival rate
Figure 8
Six media per request, large files
Utilization
1
1 Analytical
0.8 Simulation
1 L J
0.6
o
//
0.4 P —
| »
0.2 “
z/
®
0 v T v T T T
0 0.0005 0.001 0.0015 0.002
Arrival rate
Figure 9

549

Varying arrival rate, small files

Response time

300
.0001
’ ——
250 .009
———
.0017
—
200
.025
+
150
100 T ¥ T ¥ T ¥
2 4 6 8
Media per request
Figure 10

Varying media per request, small files
Drive utilization

05

04

03

0.2
o1 T—
0~ T — - T T™ v =T
0 0.0005 0.001 0.0015 0.002 0.0025
Arrival rate
Figure 11

550

Response time vs. number of drives,

Response time
700
‘ lambda=0.001
600 ——
\ \ lambda=0.0034
§00 —
1 \ S lambda=0.0058
400 ——
K \ lambda=0.0082
300 —\\ - ——
9
T . " —— —— *
100
0 7 T T " T
1 2 3 4 5 3 7 8
Number of drives
Figure 12
Four media per request, small files
Utilization
2 drves
——
0.8 3 dnves
——
06 4 drves
—’-—
§ drives
0.4 -8
6 dnves
[—
0.2 8 drives
——

0 0.002 0.004 0.006 0.008 0.01

Arvival rate

Figure 13

551

Dividing a request between two devices

Six media
Response time
5,000
1 / 3'3
4,000 —lf—
/ 4-2
3,000 ——
5-1
2,000 —e
6-0
1.000 “ +
0 ¥ T v T L
0 0.001 0.002 0.003
Arrival rate
Figure 14
Tertiary storage in a QNM
tertiary storage response time
1,400
5000 sim
1,200]
5000 ana
1,000
o 9000 sim
800 .
600 9000 ana
400
200
oTr—T " T T TrrTrT>Tr T roTTY
0 5 10 15 20 25 30 35 40
customers
Figure 15

552

NEXT
DOCUMENT

e

1/O-Efficient Scientific Computation Using 1 PIE

Darren Erik Vengroff* Jeffrey Scott Vitter!
Dept. of Electrical Engineering Dep. of Computer Science
Evans Hall Box 90129
Univ. of Delaware Duke University
Newark, DE 19716 Durham, NC 27708-0129
voice: (302) 831-2405 voice: (919) 660-6548
FAX: (302) 831-4316 FAX: (919) 660-6502
email: vengroff@ee.udel.edu email: jsv@cs.duke.edu

July 25, 1996

Abstract

In recent years, 1/O-eflicient algorithms for a wide variety of problems have
appeared in the literature. Thus far, however, systems specifically designed?
to assist programmers in implementing such algorithms have remained scarce.
TPIE is a system designed to fill this void. It supports 1/O-efficient paradigms
for problems from a variety of domainsg, including computational geometry,
graph algorithms, and scientific computation. The TPIE interface frees pro-
grammers from having to deal not only of explicit read and write calls, but also
the complex memory management that must be performed for 1/0-efficient
computation.

In this »aper, we discuss applications of TPIE to problems in scientific
computation. We discuss algorithmic issues underlying the design and imple-
mentation of the reicvant components of TPIE and present performance results
of programs written to solve a scries of beuchmark problems using our current
TPIE prototype. Some of the benchmarks we present are based on the NAS
parallel benchmarks [5), while others are of our own creation.

We demonstrate that the CPU overhead required to manage 1/0 is small
and that even with just a single disk the 1/O overhead of 1/O-efficient compu-
tation ranges from negligible to the same order of magnitude as CPU time. We
conjecture that if we use a number of disks in parallel this overhead can be all
but eliminated.

*Supported in part by the U.S. Army Research Office under grant DAAH(04-93-G- 0076 and by
the National Science Foundation under grant DMR-9217290. Portions of this work were conducted
while visiting the University of Michigan and Duke University

tSupported in part by the National Science Foundation under grant CCR- 9007851 and by the
U.S. Army Research Office under grants DAAL03-91- G 0035 and DAAH04-93 G -0076.

553

1 Intrcduction

The Input/Output communication between fast internal memory and slower sec-
ondary storage is the bottleneck in many large-scale applications. The significance of
this bottleneck is increasing as internal computation gets faster and parallel comput-
ing gains popularity {17). CPU bandwidth is currently increasing at a rate of 40~60%
per year, versus an annual increase in bandwidth of 7 -10% for disk drives [18]. Main
memory sizes are also increasing, but not fast enough to meet the needs of many
large-scale applications. Additionally, main memory is roughly two orders of magni-
tude more expensive than disks. Thus, if I/O-efficient code can be written so as to
provide performance near that obtained by solving the same problem on a machine
with a much larger RAM, a great dcal of money can be saved.

Up to this point, a great mary I/O-efficient algorithms have been developed. The
problems that have been ~on:idered include sorting and permutation-related problems
(1, 2, 14, 15, 22], computational geometry 3, 4, 11, 23] and graph problems [7]. Until
recently, there had been virtually no work directed at implementing these algorithms.
Some work has now begun to appear [6, 19], but to the best of our kncwledge no
comprehensive package designed to support 1/O-efficient programming across multiple
platforms and problem domains has appeared. One goal of our ongoing research is
to remedy this problem. Towards that end, we ar¢ developing TPIE, a transparent
parallel 1/0 environment designed to facilitate the impiementation of 1/O-efficient
programs.

In this work, we describe a series of experiments we have run using a prototype
implementation of the TPIE interface. The experiments were chosen as models of
common operations in scientific codes. Several of the experiments are on NAS parailel
benchmarks designed to model large-scale scientific computation [5). The results of
our experiments demonstrate that I/O-efficient programs can be written using a high-
level, portable, abstract interface, yet run efficiently.

In Section 2, we introduce the parallel I/O model of computation on which the
algorithms that TPIE implements are based. In Section 3, we describe the TPIE
system itself and the structure of our current prototype. In Section 4, we discuss
the benchmarks we implemented, the algorithms that TPIE uses, and the pe.ior-
mance of our implementations. Finally, we list a number of open problems wort!.y of
examination in the continued pursuit of I/Q-eflicient computad.ion.

2 The Parallel 1/0O Model of Computation

The algorithms TPIE uses are typically based on those designed for the parallel I/Q
model of computation [22]. This model abstractly rerresents a system having one or
more processors, some fixed amount of main memory, and one or more independent
disk drives. It is described by the following parameters:

IN’
M

il

of items in the problem instance

i

of items that can fit into main memory

554

of items per disk bloci.
of disks.

oW
I

We define an 1/0 operation, or simply an 1/0 for short, to the be process of trans-
ferring exactly one block of data to or from each disk. The 1/O complexity of an
algorithm is simply the number of I/0s it performs.

In discussing the I/O complexity of aigorithms, we make every effort to avoid the
use of big-Oh asvmptotic notation. Instead, we are iuterested in as exact a figure as
possibie for the number of I/Os an algorithm will use for a given probleni size and run-
time environment. in some cases, the relative effect of rounding up certain quantities
to the their integral ceilings can L, significant, for example, when quantities round
to small natural numbers. This effect is typically ignore« when big-Oh notation is
used. We are careful in this work to consider ceilings explicitly when their effect is
significant: we use the ceiling notation [z] to denote the smallest integer that is > z.

3 TPIE: A Trausparent Parallel /0 Environment

TPIE 20, 21] is 2 system designed to assist prcgrammers in the development of 1/0-
«ficient programs for large-scale computation. TFPIE is designed to be portable across
a variety of platforms, im~luding both sequential and parallel machines with both
single and multiple I/(, devices. Applications written using TPIE should continue
to run unmodified moved from one system that supports TPIE to another.
In order to facilita.. ... tevel of portability, TPIE implements a moaeraiely sized
set «f high-level access methods. The access mothods were chosen based on their
paradigmatic importance in the aer'gn of I/O-efficient algorithms. Using these access
methods, we can implenient 1/O-efficient algorithms for many problems. including
sorting [2. 15, . 22i. permuting [8, 9, 10, 22!, computational geometry problems [3,
4, 11, 23]. graph-theoretic problems {7]. and scientific proble.ns 8. 13. 221

Berause such a large mimber of problems can be solved using a relatively
numver of paradigms. it is important that the access method implementations renaain
fexible enough to allow application programs a great deal of control over the func-
tionel details of the computation taking place within the fixed set of paradigms. To
accomplish this, TPIE takes a somewhat non-traditicnal apnroach to 1/0. Instead of
vlewing computation as an enterprise in which code (. s data. opetates on it and
then writes resnlts, we view it as a continuous process in which program objects are
fed streams of data frum an outside source and leave trails of results behind them.
The distinction is subtle, bnt significant. In the TTUIE model, programmers don’t
have to worry about making explicit calls to /O subroutines or managing internal
memory data structures in a run-time dependent environment. Instead. they merely
specify the functional details of the computation thev wish to perform within a given
paradigni. TPIE then choreographs an appropriate sequence of data movements to
keep the comprtation ted.

TPIL is implemaer ed in C++4+ as a set of templated classes and functions and
a run-time library. Currently, a prototype implementation supports access to aata

stored on one or more disks attached to a workstation.! In the future, we plan to port
the interface to larger multiprocessors and/or collections of workstations connected to
a high-speed LAN. From the programmer’s perspective, very little will change when
the system moves to parallel hardware. All the same access methods will continue
to exist, and applications wili still be written with a single logical thread of control,
though they will be executed in a data parallel manner.

The current TPIE prototype is a modular system with three compenents. The
Access Method Interface (AMI) provides the high-level interface to the programimer.
This is the only component with which most programmers will need to directly in-
teract. The Block Transfer Engine (BTE) is responsible for moving blocks of data
to and from the disk. It is also responsible for scheduling asvnchronous read-ahead
and write-behind when necessary to allow computation and 1/0 to overlap. Finally,
the Memory Manager (MM) is responsible for managing main memory resources. All
memc .y allocated by application programs or other components of TPIE is handled
by the MM. In the case of application programs, this is facilitated through the use of
a global operator new() in the TPIE library.

The AMI supports access methods including scanning, distribution, merging, sort-
ing, permuting, and matrix arithmetic. In order to specify the functional details of a
particular operation. the programmer defines a particular class of object called a scan
management object. This object is then passed to the AMI, which coordinates 1/0
and calls member functions of the scan management object to perform computation.
Readers interested in the syntactic details of this interaction are referred to the TPIE
Manual, a draft version of which is currently available [21].

4 TPIE Performance Benchmarks

The benchmarks we implemented ~vork with four of the basic paradigms TPIE sup-
ports: scanaing, sorting. sparse matrices. and dense matrices. The benchmarks il-
Instrate important characteristics not only of the TPIE prototype and the platform
on which the tests were run. but also of [/O-eflicient computation in gencral. In the
exposition that follows we will discuss both.

Two of the benchmarks are based on the NAS parail~l benchmarks set [5]. which
consists of kernels taken from applications in computational fluid dynamics. Besides
being representative of scientific computations. these benchmarks also provide refer-
ence output values that can be checked to verify that thev are implemented correctly.
1= addition to the NAS benchmarks. there are two new benchmarks designed to fur-
ther exercise TPIE’s matrix arithmetic routines.

Each of the benchmarks is accompanited by a graph illustrating the performan. »
of one or more TPIE applications written to exeente it. The graphs show both overall
wall time and CPU time on the y-axis, as plotted against various problem sizes on
the r axis. Given adequate and appropriately utilized 1/0 bandwidth, the wall time

'The following workstation/OS combinations are supported: Sun Sparcstation/SunOS 4.x, Sun
Sparcstation/Solaris 5 x. DEC Alpha/OSF/1 1.x and 2.x. HP an00/HP-UX.

556

and CPU time curves would be identical; therefore, getting them as close together as
possible is an important performance goal.?

All of the benchmarks were run on a Sun Sparc 20 with a single local 2GB SCSI
disk. The operating system was Solaris 5.3. Aside from the test application being
run. the svstem was idle. In all cases, TPIE was configured to restrict itself to
using 4 megabytes of main memory. 1/O was performed in blocks of 64KB, with
read-ahead and write-behind handled by a combination of TPIE and the operating
system. The reason we used such a large block size was so that our computations
would be structurally similar, in terms of recursion and read/write scheduling. to the
same applications runnii.g on a machine with D = 8 disks and a more natural block
size of 8KB. On such a system. 1/O performance would increase by a factor of close
to 8. whereas inter-.al computation would be essentially unaffected.

4.1 Scanning

The most basic access method available in TPIE is scanning, which is implemented
by the polymorphic TPIE entry point AMI_scan(). Scanning is the process of se-
quentially reading and/or writing a small number of streams of data. Essentially
any operation that can be performed using O(" /DB) 1/Os can be implemented a<
a scan. This includes such operations as data generation, prefix sums, element-wise
arithmetic. inner products, Graham’s scan for 2-D convex hulls (once the points ar>
appropriately sorted). selection. type conversion, stream comparison. and many oth-
ers. The functional details of any particular scan are specified by a scan management
object.

4.1.1 Scanning Benchmark

Because scanning is such a generic operation, we could have chosen any of a very wide
variety of problems as a benchmark. We chose the NAS benchmark NAS EP {5] for
two reasons: it was designed to model computations that actually ocenur in large-scale
scientific computation; and it can be used to illustrate an important class of scan
optimizations called scan combinations.

The NAS EP benchmark gencrates a sequence of independent pairs of Gaussian
deviates. It first generates a sequence of 2.V independent uniformly distributed devi-
ates using the liner congruential method [12]. Then, it uses the polar method [12] to
generate approximately (7/4).NV pairs of Gaussian deviates from the original sequence
of uniform deviates.

Performance of our TPIE implementation of NAS EP is shown in Figure 1. There
are three sets of curves, labeled “TPIE, 2 Scans.” “TPIE, Optimized,” and “Single
Variable.”

2One obvious way to bring these curves together is to increase the CPU time by performing
addrtional or less efficient computation. Clearly, this is not the mechanism of choice. instead we
seek to reduce the overall time by ceducing the amount of 1/O and/or improving increasing the
overlap between computation and asynchronous 1/0.

557

Generate (7 /4)N Pairs of Independent Gaussian Deviates (NAS EP Benchmark)

1 ¥ 1 1 1
800 | 4
THIE 3 S s &
cans HH— -
700 I TpIE, Gptimized, [Wall} & -
TPIE, Optimized, (CPU) -x--
__ 600 Single Variable (CPU) - -
E 500} R
L 400 | BRIt
-
g
& 300} s
200 -
100 | -
1
IM2M 4M 16M

8M
Problem Size (N)

Figure 1: NAS EP Benchmark

The distinc tion between the 2 scan TPIE curves and the optimized TPIE curves
is that in the former, two separate scans are performed, one to write the uniformly
distributed random variates and the other to read the uniformly distributed ran-
dom variates and write the Gaussian pairs, whereas in the latter, the two steps are
combined into a single scan. As expected. the optimized code outperforms the unop-
timized code.

This difference is significant not so much because it tells programmers they should
combine scans. as because of the fact that scan combination is a relatively straight-
forward optimization that can be automated by a preprocessor. Such a preprocessor
would parse the C++ text of a program and, where possible, construct hybrid scan
management objects. The scans would then be replaced by a single scan using the
hybrid object. Additionally. scans can often be piggy-backed on many other types of
operations. such as merges, aistributions, sorts, and permutations.

Returning to Figure 1, the single variable curve plots the CPU performance of a
C++ program that does not perform any 1/0 at all, using TPIE or any other system.
Instead. each pair of rando. variates is simply written over the previously generated
pair in main memory. The purpose of this curve is to illustrate a fundamental lower
bound on the CPU complexity of generating the variates By comparing this to the
CPU curves of the TPIE implementations we can see that the CPU overhead associ-
ated with scheduling and performing I/0O, communicating between the components of
TPIE, and interacting with the user supplied scan management object is quite small.
In the optimized case it amounts to approximately 20%.

558

4.2 Sorting

Sorting is a fundamental subroutine in many computations. There are a tremendous
number of sorting algorithms which support many different models of computation
and assumptions about input format and/or key distribution. In this section we
discuss & number of issues related to sorting in external-memory, both theoretical
and practical.

4.2.1 1/0-Efficient Sorting Algorithms

With rare exception®, I/O-efficient comparison sorts fall into one of two categories,
merge sorts and distribution sorts. Merge sorts work from the bottom up, sorting
small subfiles and then combining them into successively larger sorted files until all
the data is in one large sorted file. Distribution sorts work from the top down by com-
puting medians in the data and then distributing the data into buckets based on the
median values. The buckets are then recursively sorted and appended to one another
to produce the final output. The I/O structure of radix sort resembles that of distri-
bution sort, except that the entire set of keys is involved in O((ig N/M)/(lg M/DB))
large O(M/DB)-way distribution steps.

One common technique for dealing with multiple disks in parallel is to stripe data
across them so that the heads of the D disks are moved in lock step with one another,
thereby simulating a single large disk with block size DB. On a striped disk system,
the I/O complexity of merge sorting N objects is

A , N [Ig(N/M)
R . }\’ ;\ = .
255 (08208 N/M| = 20 [lg(M/?DB)

(1)

Each item is read once and written once in each pass, and all reads and writes are
fully blocked. The logarithmic factor is the number of levels of recursion required to
reduce merge subproblems of size M into the final solutic.. of size .N. Each stream is
double buffered, hence we can merge M/ 2D B) streams at a time. If we are able to
compute medians perfectly with no additional cost, as in the case where the keys are
uniformly distributed. we can perform distribution sort in this same bound.

Asymptotically, the I/O bound (1) is not optimal for sorting. By using the D
disks independently. we can do distribution sort in

N [lg(N/M) _
kb8 [lg(M/2BJ (2)

I/Os, where k > 1 is a constant whose value depends on the complexity of finding
the medians, the quality of the medians as partitioning elements, and how evenly the
buckets are distributed over the D disks. Aithough the the denominator in (2) is
larger than the denominator in (1) by an additive term of lg D, the leading constant
factor in (2) is larger than that of (1) by a multiplicative factor of k. A number of

3For a recent example, see [3).

559

independent disk distribution sort algorithms exist [1, 13, 16, 22}, with values of &
ranging from approximately 3 to 20.

b.:ore implementing an external sort on parallel disks, it is useful to examine the
circumstances under which the [/O complexity (2) for using the disks independe. tly
is less than the 1/O complexity (1) with striping. If we neglect the ceiling term for the
moment, algebraic manipulation tells us that it i% better to use disks independently
when

(%)
M\«
(E) < D.
Thus, D must be at least some root of M/2B. The critical issue now becomes the
value of k. If k = 1 (i.e, if we do not need extra I/Us to compute A /2B medians
that partition the data evenly and if each resulting bucket is output evenly among
the D disks), it is better to use disks independently. However, if £k = 4, we need
D > (M/2B)%* in order for using disks independently to be worthwhile, which is
not the case in current systems. For this reason, TPIE implements both merging and
distribution in a striped manner. Work is continuing on developing practical methods
that use disks independently.

Another important aspect of the behavior of I/O-efficient algorithms *or sort-
irg concerns the behavior of the logarithmic factor [lg(N/M)/1g(M/2DB,] in the
denominator of (1). The logarithmic term represents the number of merge passes
in the merge sort. which is always integral, thus necessitating the ceiling nota-
tion. The ceiling term increases from one integer to the next when N/M is an
exact power of M/(2DB). Thus over very wide ranges of values of N, of the form
M'/(2DB)* < N/M < M™'/(2DB)'*}, for some integer : > 1, the 1/ complexity
of sorting remains linear in V. Furthermore, the possibility of i > 3 requires an
extremely large value of V if the system in question has anything but the tiniest of
main memories. As a restlt, although the 1/O complexity of sorting is not, strictly
speaking, linear in N, in practice it often appears to be.

4.2.0 Sorting Benchmark

The NAS IS benchmark is designed to model key ranking [5]. We are given an array
of integer kevs Ko. K,.... Ay _; chosen from a key universe [0,U), where U < N.
Our goal is to produce, for each i, the rank R(A,), which is the position K, would
appear in if the kevs were sorted. The benchmark does not technically require that
the keys be sorted at any time, only that their ranks be compute:” As an additional
caveat, each key is the average of four random variates chosen independently from a
uniform probability distribution over [0.U). The distribution is thus approximately
normal. Ten iterations of ranking are to be performed, and at the beginning of e~ch
iteration an extra key is added in each distant tail of the distribution.

In order to rank the kevs, we sort them, scan the sorted list to assign ranks, and
then re-sort based on the original indices of the keys. In the first sort, we do not
have a uniform distribution of kevs, but we do have a distribution whose probabilistic
structure is known. Given any probabilistic distribution of keys with cumulative

560

distribution function (c.d.f.) Fi, we can replac- - ich key value k; by k! = Fy(k;)
in order to get keys that appear as if chosen at random from a uniform distribution
on [0,1]. Because the keys of the NAS IS benchmark are sums of four independent
uniformly distributed random variates, their c.d.f. is a relatively easy to compute
piecewise fourth degree polynomial.

For the sake of comparison, we implemented this first sort in four ways, using both
merge sort and three variations of distribution sorting. One distribution sort, called
CDF1, assumed that the keys were uniformly distributed. The next CDF4, used the
fourth degree c.d.f. mentioned above to make the keys more uniform. Finally, as a
compromise, CDF2 used a quadratic approximation to the 4th degree c.d.f. based on
the c.d.f. of the sum of two independent uniform random variables.

In the second sort, the indices are the integers in the range {0, N), so we used
a distribution sort in all cases. The rationale behind this was that distribution and
merging should use the same amount of 1/O in this case, but distribution should
require less CPU time because it has no need for the main-memory priority queue
that merge sorting requires.

The performance of the the various approaches is shown in Figure 2. As we
expected, merge sort used more CPU time than any of the distribution sorts and the
more complicated the c.d.f. we computed the more CPU time we used. When total
time is considered, merge sort came out ahead of the distribution sorts. This appears
to be the result of imperfect balance when the keys are distributed, which causes
an extra level of recursion for a portion of the data. Interestingly, the quality of
our c.d.f. approximation had little effect on the time spent doing 1/0. We conjecture
that this would not be the case with more skewed distributions, such as exponential
distributions. We plan experiments to confirm this. The jump in the total time for
the merge sort that occurs between 8M and 10M is due to a step being taken in the
logarithmic term in that range.

4.3 Sparse Matrix Methods

Sparse matrix methods are widely used in scieotific computations. A fundamental
operation on sparse matrices is that of multiplyi~g a sparse N x N matrix A by an
N-vector x to produce an N-vector z = Az.

4.3.1 Sparse Matrix Algorithms

Befare we can work with sparse matrices in secondary memory, we need a way of
representing them. In the algorithms we consider, a sparse matrix A is represented
by a set of nonzero elements E. Each e € E is a triple whose components are row(e),
the row index of € .n A, col(e), the column index of e in A, and value(e), the value
of A[row(e), col(e)).

In main memory, sparse matrix-vector multiplication can be implemented using
Algorithm 1. If the number of nonzero elements of A is N,, then Algonithm 1 runs
in O(N,) time on a sequential machine.

561

Rank N Integers 10 Times (NAS IS Benchmark)
30000 T T T T | ~T

Dist. CDF4, (Wall) 8-
Dist. CDF4, (CPU) ¢
25000 | Dist. CDF 2 Wall G—
Dist. CDF2, (CPU
Dlst CDF 1 Wall -E}
Merge Wall E}
Merge, (CPU) ->¢-

15000 -

Time (seconds)

10000 }

5000 |-

2M M M N i
P?oblem Sizegh’z/) 10M 12V

Figure 2: NAS IS benchmark performance

In secondary memory, we can also use Algorithm 1, but I/O performance depznds
critically on both the order in which the elements of A are processed and which of
components of z and r are in main memory at any given time. In the worst case,
every time we reference an object it could be swapped out. This would result in 3N,
1/Os.

In order to guarantee I/O-efficient computation, we reorder the elements of A in
a preprocessing phase. In this preprocessing phase, A is divided into N/M separate
M x N sub-matrices A,, called bands. Band A, contains all elements of A from
rows iM to (i + 1)M — 1 inclusive. Although the dimensions of all the A, are the
same, the number of nonzero elements they contain may vary widely. To complete
the preprocessing, the elements of each of the A, are sorted by column.

Once A is preprocessed into bands, we can compute the output sub-vector

ZiM .. i+)M - 1]

from A, and z using a single scan, as shown in Algoni’hm 2. If we ignore the prepro-
cessing phase for a moment and assume that the elements of x appear in order in exter-
nal memory, the I/O compiexity of Algorithm 2is N,/DB+ [N/M|N/DB+ N/DB.
The entire preprc:~. = « vbase can be implemented as a single sort on the nonzero
clements of A, with and index being the primary key and column being a secondary
key. This takes 2N,/DB H‘(%iz%%] 1/0s, as explained in Section 4.2.1. Note, how-
ever, that the preprocessing only lias to be done a single time for a given matrix A.
After that, the main phase of the algorithm can be executed repeatedly for many

different vectors r. This is a common occurrence in iterative methods.

562

(1) 2«0

(2) foreach nonzero element e of A do

(3) z[row(e)] = z{row(e)] + value(e) x z{col(e)};
(4) endforeach

Algorithm 1. An algorithm for computing z = Az where A is a sparse N x N matrix
and r and z are N-vectors.

4.3.2 The SMOOTH Benchmark

TPIE supports sparse matrices at a hLigh level as a subclass of AMI streams. The
nonzero elements of a sparse matrix are stored in the stream as (row, column, value)
triples as described in the preceding section. AMI entry points for cons!ructing sparse
matrices as well as muitiplying them by vectors are provided.

In order to test the performance of TPIE sparse matrices, we implemented a
benchmark we call SMOOTH, which models a finite element computation on a 3-D
mesh.

The SMOOTH benchmark implements sparse matrix-vector multiplication be-
tween a NV x N matrix with 27N nonzero elements and a dense N-vector. The result
is then multiplied by the matrix again. Ten iterations are performed.

The performance of SMOOTH is shown in Figure 3. Although we do ten itera-
tions of multiplication, and only preprocess once, the total time with preprocessing is
significantly higher that that of the multiplication iterations alone. As expected, 1/0O
is not a major contributor to this difference, because sorting only requires a small
number of linear passes through the data. The big difference is in CPU time. The
additional CPU time used in preprocessing the sparse matrix is roughly twice the
CPU time used in all ten iterations of the multiplication.

4.4 Dense Matrix Methods

Dense matrices appear in a variety of computations. Like sparse matrices, they are
often multiplied by vectors, and banding techniques similar to those discussed in the
previous section can by used. Another fundamental operation is multiplication of two
K x K matrices A and B to produce C = AB.

4.4.1 Dense Matrix Alforithms

Asymptotically I/O-optimal multiplication of two K x A" matrices over a quasiring
can be done in ©(K?*/vVMDB) 1/Os [22]. There are at least two simple algorithms
that achieve this bound. The first algorithm, Algorithm 3, uses a recursive divide-
ard-conquer approach. The second algorithm, Algorithm 4, also partitions the input
matrices, but all partitioning is done up front in a single permutation of each matrix.

563

/] Preprocessing phase:

(1) foreach nonzero element e of A do

(2) Put e into A[I'OW(C)/MJ;

(3) endforeach

(4) for i« O,N/M do

(5) Sort the elements of A, by column,
(6) endfor

|/ Main algorithm:

(7) Allocate a main memory buffer zp; of M words;
(8) fori« 0to [N/M] do

9 M <0

(10) foreach nonzero element e of A; do

(11) zum[row(e) — iM] = zp[row(e) — iM] + value(e) x z[col(e)];
(12) endforeach

(13) Write zps to 2[iM ... i +)M — 1];

(14) endfor

Algorithm 2: An I/O-efficient algorithm for computing z = Az where A is a sparse
N x N matrix and = and 2 are N-vectors.

564

Sparse Matrix Multiplication of doubles (SMOOTH Benchmark)
T T T T

1400 -

: With Preprocessing, (CPU
1200 = without Prelptocessin%;, Wall}l

With Preprocessing, (Wall) 8-
Without Preprocessing,

« 1000 | -
=
g
§ 800 |- -
£ e} -
=
400 | -
200 .
s 1 1 1
50000 100000 150000 200000 250000
Problem S?ze ?N)

Figure 3: SMOOTH Benchmark

The matrix product is then produced iteratively, and a single final permutation re-
turns it to canonical order. Both algorithms assume the input matrices are stored in
row major order.
The I/O complexity of Algorithm 3 is
12V/3K3
vMDB'

while that of Algorithm 4 is

where prep(NN) is th2 I/O complexity of the preprocessing and postprocessing steps,
which can be done by sorting the K2 elements of the three matrices, giving us

K? [2 lg(K/M) 1

prep(K) = 6 55 |20 (M/2DB) |

In special circumstances, when B, D, K, and v M are all integral powers of two, the

pre- and post-processing are bit-matrix multiply complement permutations, which
can be performed in fewer (/Os than sorting [10].

565

(1) if3K? < M then

(2) read A and B into main memory;

(3) compute C = AB in main memory;

(4) write C back to disk;

(5) else

(6) partition A at row K/2 and column K/2;

(7 label the four quadrant sub-matrices 4;,,, 4,2, A2, and Az as shown in Figure 4;
(8) partition B into By, By 2, B2y, and B in a similar manner;

(9) permute all sub-matrices of A and B into row major order;

(10) Perform the (11)-(14) using recursive invocations of this algorithm
(11) Cr1 + A1 1Bii + A12By)

(12) Cir2 « AL1Byo + Ay 2Ba:

(13) Coy A2 By + 422821

(14) Cop A1 By 2 + A22B3;

(15) Reconstruct C from its sub-matrices C) 1, C) 3, Ca, and Cy2;
(16) permute C back into row major order;

(17) endif

Algorithi 3: A recursive divide-and-conquer approach to matrix multiplication. Two
R x K input matrices A and B are multiplied to produce C = AB.

4.4.2 Dense Matrix Benchmark

TPIE has high-level support for dense matrices over arbitrary user-defined quasirings.
Operations supported include initialization, element-wise arithmetic, and matrix-
matrix multiplication. Matrix-matrix multiplication uses Algorithm 4. Separate AMI
entry points are available for the preprocessing permutation and the iterative multi-
plication itself. allowing a matrix to be preprocessed once and then multiplied by a
number of other matrices.

We implemented a benchmark, called DENSE, which constructs twe K x K matri-
ces, preprocesses theni. and then multiplies them. Times were recorded for both the
total benchmark and for the multiplication only. The results are shown in Figure 6.
As expected. the CPU time required to multiply the matrices follows a cubic path.
Because of read-ahead, 1/0) is almost fully overlapped with computation, making the
CPU and total time curves virtually indistinguishable. The cest of preprocessing the
matrices is approximately one third of the cost of multiplying them. Thus if several
multiplications are done with the same matrix amortization greatly reduces this cost.

5 Conclusions
We have presented a series of results demonstraiing that [/O-efficient computation can

be made practical for a variety of scientific computing problems. This computation
is made practical by TPIE. which provides a high level interface to computational

566

Figure 4: Partitioning a matrix into quadrants

(1) partition A into K/\/M/3 rows and K/\/M/3 columns of
sub-matrices each having \/M/3 rows and \/M/3 columns:

/[step (1) is shoun n Figure 5

(2) partition B in a manner similar to A;

(3) permute all A, and B, ; into row major order;

(1) foreach 1,j do

(5) Ciy & Lk Ak B y:

(6) endforeach

(7) reconstruct C from all C, ,;

(8) permute C back into row major order;

Algorithm 4: An iterative approach to matrix multiplication.

paradigms whose 1/0 complexity has been carefully analyzed. Using TPIE results in
only a small CPU overhead ver. -5 eutively in core implementation. but allows much
larger data sets to be used. * Liitwenally, for the benchmarks we implemented. 1/0
overhead ranged from being ne-tiy:' » to being of the same order of magnitude as
internal computation time.

If we replace the si- gle disk or which the tests were run with D disks, where D
is on the order of 8, we conjecture that the 1/0 time required in our computations
could be reduced by a factor very close to D. In applications like DENSE, where 1/0
overhead is already negiigible, little would change, but in applications like NAS IS
and NAS EP, we would see a dramatic reduction in 1/0) overhead. As discussed in
Section 4, CPU ti ne should not change appreciably. Recalling that a portion of the
1/0 that would be reduced by a factor of D is already overlapping with computation,
we expect that in many case the 1/O overhead (the portion that do~s not overlap
with CPU usage) could be eliminated. We plan to assemble a parallel disk system to
evaluate this conjecture experimentally.

In addition to the problems discussed here, there are many other sci ntific com-
putations that we believe can benefit from careful analysis and 1/0- flicient imple-
mentation. These include LU P decomposition, FFT computatiou, and multi-grid

567

Al.l Al,') AI.3
Ay Ao
R
‘42,1 Atc -2
An—l,x-l An-l,x
Ax,n—'z Ax,n—l AK,I\

Figure 5: Partitioning a matrix into sub-matrices in step (1) of Algorithm 4. Each
sub-matrix A, , kas \/M/3 rows and \/M/3 columns. The number of sub-matrices

across and down A is x = K/\/M/3.

methods, all of which we plan to explore as the TPIE project continuss. We also
plan to investigate the construction of a scan combining preprocessor as described in
Section 4.1.1.

Complementing this high level work, there are a number of potentially interesting
1/0 related research topics concerning how environments like TPIE should inte,..ct
with operating systems. These include models of application controlled virtual mem-
ory and the behavior of TPIE applications in multiprogrammed environments where
the main memory available to a given process may vary over time.

In closing, we are encouraged by the results we have presented, which demonstrate
that 1/0O efficient computation using an abstrart, high level model is practical. It is
important to realize, however, that this research is ouly in its infancy. and that many
more questions, both theoretical and practical, remain to be answered.

6 Acknowledgments

We thank Yi-Jen Chiang. Liddy Shriver, and Len Wisniewski for helpful discussions
on implementing 1/0O-efficient algorithms. We also thank Jim Baker, Philip Klein,
and Jon Savage for suggesting that we study sparse matrix methods.

We also thank Yale Patt and the stuff of the ACAL lab at the University of
Michigan for the facilities aud support that allowed much of this research to take
pla e,

568

Multiply Two K x R Matrices of doubles (DENSE Benchimark)

H00 1 T T T T T T
2200 L With Preprocessing. (Wall) 8— -
. With Preprocessing, (CPU) >«
4000 FWitiuat Preprocessing, {Walld G- -
Without Preprocessing. (CP.! x-
3500 | -
=z
= 3000 .{
& »00f -
Z 2000} .
‘ 1500 | -
1000 |- -
500 -
0
512 768 1024 1280 1336 1972 2048
Problem Size (1\3
Figure 6: DENSE Benchmark
References
i1l A. Aggarwal and G. Plaxton. Optimal paralle! ~orting in multi-level storage. In Froc.
4th Annual ACM-SIAM Symp. on Discrete Alg: ithms, Arlington, VA, 1994,
2, A Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116 1127, 1988.
3] L. Arge. The buffer tree: A new technique for optimal I/0-algorithms. Technical

4

[6]

Report RS-94-16. BRICS, Univ. of Aarhus, Denmark. 1994.

L Arge. D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing
line segments in georgraphic information systems. submiiterd, 1995.

D. Bailey, E. Barszez, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Fredrickson, T. Lansinki, R. Schrieber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. The NAS parallel benchmarks. Technical Report RNR-94-007,
RNR. March 1994.

Y.-J. Chiang. Experiments on the practical 1/0O efficienry of geometric algorithms: Dis-
tribution sweep vs. plane sweep. In Proc. 1995 Worksl.op on Algs. and Data Structures.
(WADS). 1995

569

7

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff. and J. S.
Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symp. on Discrete
Alg.. pages 139 149, 1995.

] T. H. Cormen. Virtual Memory for Duta Parallel Computing. PhD thesis, Department

of Electrical Engineering and Computer Seience, Massachusetts Institute of Technology.
1992.
T. H. Corme. Fast permuting in disk arrays. Jowrnal of Parallel and Distributed

Computing. 17{1 2):11 57, Jan./Feh. 1993.

T. H. Cormen. T. Sundquist, and L. F. Wisnicwski. Asymptotically tight bounds for
performing BMMC permutations on paralle]l disk systems. Technical Report PCS-
TR94-223, Dartmonth College Dept. of Computer Science, July 1994,

A+ T. Goodrich. J.-J. Tsay, D. E. Vengroff. and J. S. Vitter. External-memory com-
. ational geometry. In IEEE Foundations of Comp. Seci., pages 714 723, 1993.
D. E. Knuth. The Art of Computer Programming: Senunumerical Algorithms. vol-

ume 2. Addison Weslev, 2d. ed. edition, 1981.

C. E. Leiserson S, Rao. and 8. Toledo. Efficient out-of-core algorithms for lineas
relaxation using blocking covers. In IEEE Foundatrons of Comp Set.. pages 704 713,
1993.

P M. H. Nodine and). S. Vitter. Large-scale sorting in parallel memories. In Proc. Ird

ACM Symp. on Parallel Algorithms and Architectures, pages 29 39, 1990.

51 M. H Nodine and J. S. Vitter. Deterministic distribution sort in shared and dis-

tribnted memory mnltiprocessors. In Proc. 5th ACM Symp. on Parallel Algorithms
and Architectures. June 1993,

i) M. H. Nodine and J. 8. Vitter. Paradigms for optimal sorting with multiple disks. In

Proc. of the 26th Hawaa Int. Conf. on Systems Sewences. Jan. 1993,

Y. N. Patt. The /O subsvstem a candidate for improvement. [EEE Computer.
27(3):15 16, Mar. 1994

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. JEEE Computer,
27(3):17 28, Mar. 1991.

E. A. M. Shriver and L. F. Wisniewski. Choreographed disk aceess using the whiptail
file system: Applications manuscript.

D. E. Vengrofl. A transparent parallel 1/0 environment. In Proc. 1994 DAGS Sympo-
stum on Parallel Compnutation, July 1994.

D. E. Vengroff. TPIE User Manual and Reference. Duke University, 1995. Available
via WWW at http://www.cs.duke.edu: "dev/tpre.html.

J. S Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level mem-
vries. Algorithmica. 12(2), 1994.

B. Zhu. Further computational geometry in secondary memory. In Proc. Int. Symp.
on Algorithms and Compulation, 1994

570

NEXT
DOCUMENT

Progress Toward Demonstrating ‘
A High Performance Optical Tape -
Recording Technology

W. S. Oakley
LOTS Technology, Inc.
1274 Geneva Drive
Sunnyvale CA 94089
408-747 -1111
Fax: 408-747 - 0245

In September 1995 LOTS Technology received an award under the Advanced Technology
Program to pursue high performance digital optical tape recording technology using a
green laser source. The program is a two year technology development effort with the goal
of demonstrating uscful rcad/write data transfer rates to at least 100 megabytes per second
and a user data capacity of up to one terabyte per cartridge implemented in a system using
a 3480 style mono-reel tape cartridge. Although both write once and crasable phase
change optical media have been previously demonstrated, and both are compatible with
this technology, current availability limits this effort to the use of write once media. This
paper discusses the technology developments achicved during the first year of the program
during the period September 1995 through August 1996.

Beamforming Hologram,

64 Beams in 8 x 8 array Objective Lens &

Focus Track Actuator

'
Z=

= V=
7
‘ l Moving Medw
|
I
!

I 64 Channel Modulator
Solid State

Diode Pumped /
Frequency Doubled

532 nm Laser, 400 mw ili

Focus & Track Servo

Data Detectors

[
[
!
¢
I
)
)

OENs 1 ppt

571

The primary intent of the program is to develop the technology for multi-beam digital
optical recording and playback at high data transfer rates, 100 MB/sec. and above, and
consistent with a minimum of a terabyte capacity per data cartridge. The basic design is
implemented by a linear tape transport moving tape at several meters per second while the
tape media is written to longitudinally by means of an array of focused and modulated laser
beams. All writing beams are derived from a single diffraction limited green laser
operating at 532 nanometers. The design is implemented using a hologram as a passive
Beam-forming element to split the output from a single laser source into an array of 64
similar optical beams, each of which is independently modulated prior to focusing on the
media with a nominally half micron spot size. Beam modulation is implemented at rates to
20 MHz. by means of an array modulator of 64 elements, one element for each beam. The
basic recorder design concept is shown in Figure 1a and the optical implementation in
Figure 1b.

LOTS Y

i ' : TECHNOLOGY K

Tape Media

Focus & Track
Actuator o

—= 3 Qwp
B i ~ D
— 3 B o e B [el
/ E:] Ej <@ Optical Elements

Beamforming
é Focus & Track

Beamsplitters

Hologram

Detector
Reflective Spatial
Light Modulator
Focus & Track
d Data Beams
SEENEES Writing Beam an :

6Ne I ppt

A conceptual physical layout of a future product is shown in Figure 2, emphasizing the
inherent benefit of no head/media contact for optical recording and the preference for a
clean tape transport environment to minimize media contamination by dust and dirt. The
mechanical media transport system is configured to eliminate contact between the media

572

recording surface and any transport component. The only recording layer contact is with
the rear surface of the tape when it is wound either onto the take-up reel or mto the
cartndge.

L

Figure 2: Conceptual Physical Layout

* No Contact with Media Recording Surface
* Media in Filtered Air Environment

air filter
& fan Power Supply

N

Cartridge Tape Path o
Port g—p K(?/
Door Optical Head L};cr
N2 ppr

The overall system performance is directly determined by the specific implementations and
the individual performance characteristics of thc key components of the intended design.
The design approach required to demonstrate a 100 MB/sec. transfer rate consists of the
following major components;

(1) The tape transport.
A linear tape transport is desired to move half inch wide optical tape in a controlled
manner at speeds up to about ten meters per second. The bascline design requires a
tape speed of cight m/sec. for a 100 MB/Sec. user data rate.

(2) The array beamformer.
An array beamformer is required to produce an array of 64 similar optical read/write
beams from a single diffraction limited input beam at a wavelength of 532 nm.

(3) The array modulator.
An array modulator is required to modulate each beam in the write array at a rate
consistent with the desired bit writing rate, i.e. modulator rise and fall times of under
10 nanoseconds for the 100 MB/sec. system.

573

(4) Write/rzad channel data =ncoding and system.
Each write/read beam in the array and it’s associated detector forms a data channel for
writing/reading to/from the media. Increased system performance is achicved by
encoding the data to improve the linear bit density in a track, thereby increasing systcm
capacity and minimizing both tape speed and lascr power requircments.

(5) The 532 nm laser.
A green laser operating at 532 nm is required with sufficient power to write te the
media at the desired data rates, allowing for system optical transmission efficiency.
The laser must be diffraction limited with a low noise amplitude to preserve data
integrity. At the 100 MB/sec. data rate a source laser power of about 400 mW s
required for the optical media currently in use.

(6) A multi-element detector.
A detector array matched to the format of ihe optical footprint on the tapc media is
required for data retrieval.

(7) Focus and track capability
A means must be provided of both maintaining optical focus on the moving media and
following a previously written track group to sub micron accuracy for data retricval.

The key characteristics of these components are interrelated with the basic sysiem
performance being developed as follows. The degree of data cncoding employed dircctly
affects the linear bit recording density and in conjunction with a given track spacing and
tape width thereby determines the tape length for a given capacity. The bit density also
directly affects the tape speed required to achieve a given data rate for a specified number
of simultancously written (or read) bit tracks. For a track spacing of (.88 microns and a
track group consisting of 64 individual bit tracks, each track group occupies section of
tape 56.32 microns wide. With a guard band of two bits between track groups a group
occupies 66 track widths or 58.08 microns. Therefore, 200 track groups can be written
across a half inch (12.7 mm) wide tape a .d occupy 11.62 mm.. leaving unwritten bands of
0.54 mm on cach of the upper and lower tape edges. For a system of 1 Terabyte uscr
capacity per cartridge with a data overhead of 30% of the raw capacity, a total capacity of
1,00O/).7 or 1,428 gigabytes is required. For 200 x 64 (= 12,800) data bit tracks this
corresponds to a requirement of 111.56 megabytes or 892.5 megabits per bt track. This s
5.0 user (7.14 raw) gigabytes per 64 bit track group per tapc length. For a sysiem
recording data with a linear density of 1 bit per micron, cach bit track would therefore be
1.00 x 111.6 meters = 892.5 meters in length. [t follows that a lincar density of 2 bits per
micron requires a tape length of 446.25 meters. and a tape length of 400 meters requires a
bit track density of 2.23 bits/micron, etc..

The maximum length of tape that can be wound onto the 50 mm diameter hub in the
industry standard 3480 cartridge is a function of the tape thickness and the maximum
allowed outer tape pack diameter. A maximum outer diameter of 100 mm is assumed for
the 3480 cartridge tape pack. (the reel flange diameter is 101 mm), which for 13 micron

574

thick optical tape gives a maximum tape length of 453 meters which results in a minimum
lincar recording density requirement of 1.97 bits per micron for a one terabyte capacity. A
more conscrvative tape length of 400 m requires a lincar bit density of 2.23 bits/micron.
To provide a one terabyte capacity in the ‘3480 style cartridge the data linear density per
track must thercfore be at least 1.97 and preferably greater than 2.23 bits per micron if a
maximum of 400 meters of tape is used. The tape pack diameter for various lengths of 13
micron thick tape arc given in Table 1.

Table 1. Outer Tape Pack Diameter vs. Tape length for 13 Micron Thick Tape..

Tape Pack Diameter in mm. 85 90 95 100
Tapc Wraps in Pack 1,346 1,538 1,730 1,923
Avg. Length/wrap - mm 212 2199 2278 235.6
Total Length - m 285.4 338.2 394.1 453.0

.......... ———— - ——— P L T pepp e

Notc: The maximum flange diamecter for a *348() cartridge reel is 101 mm.

With a bit density of 1.97 bits/micron the tape velocity corres~onding to a 100 MB/s.
transfer rate in a design with 64 parallel data channels is 9.06 m/sec.. For the same channcl
paraliclism and dat: rate, and with a bit density of 2.23 bits per micron the required tape
speed is 8.0 m/scc.. Higher bit densities, i.¢. of 3 bits/micron (or more), are preferred and
would allow tape speeds below 6 m/sec. however such bit tack densities are unlikely to be
achieved with a 0.532 micron wavelength laser source and PPM (Pulse Position
Modulauon) encoding. Greater data storage densities can he achieved by the use of PWM
(Pulsc Width Modulation) encoding but are not nccessary to achieve the program
performance goals and would entail considerably greater effort and technological risk.

With the user capacity at 70% of the raw capacity a 100 megabyte/sec. user data rate
requires a raw rate of (100/0.7 =) 142.86 megabytes/scc., giving a raw bt rate of 1,142.9
megabits/sec. over 64 data channels, or 17.86 megabits/sec. per channel. At a lincar
density of 1 bit per micron this requires a system tape speed of 17.86 mcters/sec.. Higher
lincar bit densitics require less tape to provide a given capacity and consequently require
lower tape speeds for any given data rate. Greater read/write channcel parallelism, i.c. more
bit tracks per track group, also permit a lower tape speed for a given aggregate data rate.
but has no cffect on cartnidge capacity. Higher track densitics also reduce the tme to end
of tape (EOT) for a given total capacity. The tape lengths and speeds required for various
lincar track densities (# bits per micron) for a one terabyte capacity systcm operating at a
user data rate of 100) megabytes/sec. are given in Table 2.

575

Table 2. Tape Length per Terabyte & Tape Speed vs. Channel Parallelism, at
Various Linear Bit Track Den ities.

Linear Density Tape Length/ TB Tape Speed (meters/sec.) vs. Number Bit Tracks
per Track Group @ 100 MB/sec.

(bits/micron) meters

64 96 128
1.0 892.5 17.86 11.91 8.93
1.5 595.0 11.91 7.94 5.95
2.0 446.3 8.93 5.95 4.46
2.5 3570 7.14 4.76 3.57
3.0 297.5 5.95 397 2.98
35 255.0 5.10 340 2.55
4.0 223.1 446 2.98 2.23

————— - evm——

With a system capacity of one tcrabyte configured into 200 parallel track groups each of 5
gigabytes the time to the physical end of the tape is obviously the same for a given data
rate regardless of the linear bit track density. i.e. The time to read/write each track group
of 5 gigabytes, at a 100 MB/s.(= 0.1 GB/s.) data rate is (5 / 0.1) = 50 seconds. The time to
write/read the entire tape is 200 times greater at 10,000 seconds or 2.778 hours.

For a diffraction limited green laser system operating at a wavelength of 532 nm the
recording spot size is determined by the F/number (or Numerical Aperture, N.A.), of the
objective lens which focuses each spot onto the optical tape media. A N.A. of (1.6
corresponds to an F/number of 0.666 which for a plane wave incident on the lens would
create an Airy disc of radius 1.22 x 0.532 x 0.666 = 0.433 microns. For a slightly trunczred
Gaussian input beam as used in this system the full width at the half maximum (FWHM),
power point of the focused writing beam is slightly less than this at about 0.39 microns.
This is the nominal width of each written bit track on the media. The bit track separation
of 0.88 microns is therefore more than twice the track width, providing greater than 20dB
isolation between adjacent tracks on data readback.

The required modulator response times to write a bit of appropriate mark length on the tape
can be determined as a function of tape speed using the somewhat arbitrary criteria of write
pulse rise/fall times equal to 10% of a bit mark at that speed. For a system using a green
laser vperating at 0.532 micron wavelength a minimum sized bit mark can be considered as
nominally one wavelength long; i.e. (.5 microns. Hence, for example; a rise time of one

microsecnnd occurring during transit of 10% of a bit mark of (0.5 microns gives a tape
speed of 0.05 micrcas per microsecond ot 0.05 m/sec. Modulator rise times of 100, 10, 1
nanoseconds similarly correspond to tape speeds of 0.5, 5.0, and 50 meters/sec.
respectively. As shown above, linear recorded bit densities between 2 and 3 bits per
micron require tape speeds of between about 9 to 6 m/s., and therefore correspond to
modulator rise times from approximately 5.9 to 8.8 nanoseconds. Tape speeds and array
modulator rise times over these ranges have been demonstrated by LOTS during the first

576

year of the ATP program, thereby validating these parameters in regard to the chosen
design approach.

The data in Table 1 and Table 2 and the associated modulator response times are shown
graphically in Figure 3. As the per cartridge tape length is limited to about 450 meters,
recording densities below two bits per micron (0.5 microns/bit) do not provide a terabyte
capacity. Pulse position encoding does not provide recording densitics above about 2.3
bits/micron (0.435 microns/bit). Therefore to provide a terabyte capacity and reduce
program risk by the use of standard PPM encoding, the system must operate in the range
between 0.435 and .5 microns/bit. Sclection of the standard PPM (2, 7) code provides a
bit density of 2.22 bits/micron (0.45 microns/bit), requiring a tape speced of 8 m/sec for 64
parallel channels, or 4 m/sec. for 128 parallel channels, etc. to obtain the 100 MB/scc. data
ratc. A design utilizing fewer channels requires a proportionately greater tape speed and
consequently a faster modulator response to enable recording. Two dimensional modulator
arrays on about 150 micron centers have been fabricated and tested during the first year of

the program.
% 5%
LTS e
YELUMOL OCY i
Figure 3: Tape Velocit ¢ ata it

Bit Track Spacing = 0.88 Microns
Overhead = 30% of Total Data

Number of Bit Tracks per Track Group

Tape Velocity, m/s. » Nanoseconds
64 96
10 : > - £.30
/ / / 128
8 4 — n 6.63
/ f // sl
6 yd | 883
e ~
4 ,/ " 2364 L 1
2 e 8 =] L 268
Lzmml - o
0 = el . = Modulator Rise Time
0 01 02 03 04 05 06 07 08 05 10 @ 10% bit time
Recorded Data Density, Microns /Bit
400
]
r~ ..]
0 446.3 892.5

Tape Length for 1 TeraByte User Capacity, in
Hmamca NASApp

577

An oscilloscope trace of the response of a typical modulator clement in the array to a dove
pulse 1s shown in Figure 4 The specific modulator configuration tested required an 80 volt
drive signal to achieve almost 1009 throughput. Tests on various arrays have shown all
modulating elements to perform in a nominally identical manner and the inter clement
crosstalk to be minimal. The writing beam quality is not significantly affected by the
muodulator, a diffraction imited output being maintained. The use of array modulators
therefore considered validated for the high data rate multi-peam recording application.
Work is conunuing to optimize the modulator geometry to reduce the dnive voltage 1 a
significantly lower Jevel,

Dirive Pulse
Optical Response
@ 033 micron

Transmissive Mode Response o 100 v Drive
Time Scale = 10 nanoseconds/div.

AR

The 64 data bit array o be recorded on tae media 1s derived from a two dimensional array
of 8x8 beams where other ancillary beams external to the mam uray are used for focus and
tracking. The Bx8 beam pattern output from the Beam-forming hologram forms the closely
spaced track group array of 64 tracks by virtue of being rotated a few degrees (o the
direenion of tape moton as shown in Figure §

isure 5: 100 - T Beamforming Pattern
64 Beams in Tilted 8 X 8 Array

Ty

J—_O.BB
i

45.66
55.44

7.125

8 X 8 SPOTS ON .88 CENTERLINES
DIMENSIONS IN MICRONS

BONASS PPT

579

For any N x & sized array with equal spacing in both axes e rotation angle 1o achieve
equal spacing of all tracks in the recorded track group is Tan' 1/8 or 7.125 degrees. Each
track group is separated from those adjacent by two track spaces so the 200 track groups,
cach effectively 66 bits and 58 microns wide. are evenly spaced across the tape widih us
shown in Figure 6. Read/write access w any one track group is individually achieved by
vertically positioning the optical head across the tape width by means of a siepper motor,

Figure 6:100-T FORMAT

200 BOT. x 64 data bits, Scrpentine, Linkable, Bi-directional

ik
I
-t
» -
»- . ot
-
-

Shbnss pyr

The key requirements for the holographic beamsplitter include generating the desired
angular spread for the two dimensional beam array while obtaining a high diffraction
efficiency and uniformity of output into each beam. An inittal test hologram has been
fabricated providing a 3x11 beam array test pattern and shows a wotal efficiency of 73%
the main array and a beam to beam intensity uniformity of better than 5% . Work continues
on improving the holograms with the goal of achieving an efficiency of greater than Y0%
during the coming ycar.

A breadboard tape transport has been designed and fabricated and 1s being used for imitial
writing tests on phase change optical tape media supplied by Kodak. These tests indicate a
power requirement to write a half micron wide line of about 0.4 milliwatts per meter per
second of tape specd above four meters per second. Below four meters per second
increased write power 1s required to compensate for thermal diffusion of the wnite energy.

580

A tape speeid of ¢ ht meters per second therefore requires 3.2 milliwatts at the media tor
each bit track. Sixty four simultancously written bit tracks are therefore expected 1o
tequire about 205 milliwatts of power at the media. With an optical system efficiency of
nominally 75% cxcluding the hologram and a hologram cfficiency of 73%, a 400 mulhwan
laser will deliver 400 x 0.73 x 0.75 = 219 mW of optical power o ihe media, sufficient for
writing 64 tracks at the required tape speed. Figure 7 shows a singie bit track 0.6 microns
wide written at two meters per second with a 500 KHz modulation rate imposed via one
clement of the array modulator.

Phase Change Media, 2 meterc/sec., 0.6 micron wide. 4 micron/oycle

HNAS T
Summary and Conclusion.

Significant progress has heen made during the Lust year toward vahdating both the recorder
design approach and the individual component technologies necessary 1o achieve the 100
MB/sce. data raie. The demonstrated performance of the tape transport, the laser. the
holagraphic optical clement, the nodufator array. the system optics and the media indicate
that no serious technological impediment exists to engineering a digital optical tape
secorder able to read/write digital dats at rates of at least 100 MB/sec. and user data
capicitics of a terabyte in a single ‘3480° style cartnidge. The next year's elfort will be
directed at improving the individual components and integrating them into a wechnology
demonstration at the full data rate.

NEXT
DOCUMENT

RAID Disk Arrays for High Bandwidth Applications

Bill Moren
Ciprico, Inc.
2800 Campus Drive
Plymouth MN 55441 |
bmoren@ciprico.com
612-551-4000
FAX: 612-551-4002

Introduction

High bandwidth applications require large amounts of data transferred to/from storage
devices at extremely high data rates. Further, these nplications often are ‘real-time’. in
which access to the storage device must take place o * schedule of the data source, not
the storage. A good example is a satellite downlink - the volume of data is quite large
and the date rates quite high (dozens of MB/scc, typically). Further, a telemetry downlink
must take place while the satellite is overhead; once it passes over the honizon the
telemetry is lost forever.

A storage technology which is ideally suited to these types of applications is RAID
(Redundant Arrays of Independent Disks). The concepts of RAID were presented in an
academic paper from the University of California’s Berkeley campus in the mid- 1980s.
This paper (often referred to as the 'RAID paper’) offered five different architectures,
colloqmally referred to as the RAID levels'. Each RAID level, numbered one through
five, defined a different methodology for using multiple disks grouped together o
improve performance and offer redundancy. Each of the levels had distinct strengths and
weaknesses. It is a fallacy to belicve the RAID levels with higher numbers (e.g. RAID-4
versus RAID-2) are superior: the ideal RAID level for an application varies with
applications - one application may find RAID-1 best suited, RAID-S for another. and yct
another application’s best choice may be RAID-3.

RAID Levels

RAID-1 is classic disk mirroring, in which every disk has a mirror image of its data
stored on another disk. This level was the frame of reference in the RAID paper.
Mirroring has been around for some time, primarily in mainframe computing. fts
strengths are redundancy and performance. Any single drive in any given data pair may
fail and the disk system will remain accessible, though at a reduced performance level.
Because there are two disks for any given piece of data, read performance is quite good as
any two arbitrary requests for a single logical disk can be serviced simultancously on two
physical disks. However, the cost for mirroring is quite high - essentially a 100%

583

premium since every disk is duplicated. The power, cooling, and packaging costs are also
quite high. Reliability is also halved because of the duplication of disks.

RAID-2 and -3 stripe user data across a group of data drives (typically four or eight drives
per group). Every block of user data is striped, typically a byte at a time, resulting in all
the data disks servicing every user data request in parallel. This results in extremely high
data transfer rates, since multiple disks are transferring data simultaneously. RAID-2 and
-3 differ in their redundancy methodologies. RAID-2 uses multiple disks to implement a
Hamming error detection and correction code. The codes stored on a RAID-2's
redundant disks were gencrated from the data on the data disks. RAID-3 uses a single
redundant disk to store a eror correction code generated by calculating the logical
exclusive-or of the data on the data disks. Because RAID controller technology doesn't
requirc the use of a Hamming code to detect a failed drive, RAID-2 hasn't found
commercial acceptance as it 1s more costly than RAID-3.

RAID-4 and RAID-S also stripe uscr data across 2 group of data drives. However, instcad
of striping every block of data across all drives, cach block (or sometimes groups of
blocks) is stored entircly on an individual disk. This results in good transaction
performance as cach disk in the group can service separate requests for individual blocks,
simultaneously. RAID-4 and -5 differ in the methodology used for storing the error
correction codes. Both use the exclusive-or code as used in RAID-3. RAID-4 dedicates
one drive for the error correction codes while RAID-S rotates the codes throughout all
drives in the array. RAID-5 has better write performance because of this rotation as there
is less contention for access to the redundant codes.

The Right RAID Level for High Bandwidth Applications

Real-time, high bandwidth applications require the following from di.« storage: high
sustained data transfer rate under all normal operating conditions. Of all the RAID levels,
only RAID-3 fits the profile.

RAID-4 and RAID-5 don't fit hecause their performance characteristics are designed for
delivering a large number of independent requests (high VOs per seccond). These RAID
levels operate best when cach disk is servicing a scparate request. However, high
bandwidth applications arc characterized by large sequentially stored data sets. For such
data sets, transfer rate (measured in MB/sec) is the important metric, not I/Os per second.
Also, both RAID-4 and RAID-5 have severe performance degradations after a drive
failure, which is considercd a normal opcrating condition in RAID disk arrays. For rcal-
time applic ations this is unacceptable as it is imperative that the RAID subsystem be able
to service any request. at any time, regardless if there has been a drive failure.

584

RAID-3 fits for two primary reasons. First, because all user data is striped across all
drives, transfer rate is very high. This is truc for either reading or writing. In general. a
RAID-3 disk array will have a sustained transfer rate equal 1o the product of sustained
transfer rate of the disks used in the array and the number of data drives in the array.
Second, RAID-3 doesn't suffer any performance degradation after a drive fails. Because
Wl of the drives are accessed for each data request, there always is sufficient information
being transferred from the array that can be combined with the error correction code
:which is also always transferred on every data request) to generate the failed drive's data.
Special hardware on a RAID-3 controller is able to perform (.2 fuiled drive's data
reconstruction on-the-fly, with no performance loss.

Other Factors to Consider

In addition to the media redundancy inherent in RAID, other subsystem components
should be protected against failure. For instance, most RAID subsystems include AC to
DC power supplics. These units have failure rates similar to disk drives. Power supply
redundancy should also be considered. One good approach is to incorporate dual. load-
sharing power supplies in the RAID subsystem. Each power supply has sufficient power
to operate the entire subsystem in case the other should fail.

Another subsystem component worth considering for redundancy are the cooling fans.
Fans, being a mechanical device, are also prone to failures. A RAID subsystem can
incorporate redundant fans to protect against overheating in casc of a fan failure.

All redundant components, drives, power supplies, and cooling fans, can support 'hot
swapping'. Hot swapping is the ability to replace a failed component without shutting the
subsystem down or taking it offline. Most hot swap components will be housed in
canisters - carriers which slide into the RAID subsystem.

Another factor to consider is the host interface. The host interface directly affects the
performance a RAID disk array will be able to deliver. The most common interface
found is SCSI-2. It is a 16-bit wide parallel interface which clocks data at 10 MHZ for a
burst rate of 20 MB/sec. Sustained rates of over 19 MB/sec are possible with SCSI-2
RAID-3 di Xk array.

The .accessor to SCSI-2, SCSI-3, includes a performance improvement to 40 MB/sec.
% nis capability, sometimes referred to as UlraSCS], is backward compatible with SCSI-
2. SCSI-3 uses the same 16-bit wide parallel interface as SCSI-2, but data is clocked at
20 MHz, instead of SCS1-2's 10 MHz. UltraSCSI RAID-3 disk arrays are capable of
sustained data rates in excess of 38 MB/sec.

585

Another interface which offers excellent high bandwidth performance is Fibre Channcl.
This is a senial interface which is clocked at 1 Gbivsec with a sustained interface
capability of 100 MB/scc. Fibre Channel is not physically compatible with SCSI-2 or -3
but is software compatible. Fibre Channel supports a nuiaber of software protocols
which are encapsulated in ‘frames’ which are the data packets that are transferred between
Fibre Channel nodes. SCSI is onc of the software protocols supported. The first Fibre
Channel compatible RAID-3 disk arrays are becoming available in 1996 with sustained
data rates of nearly 90 MBrsec.

A good example of high bandwidth RAID-3 disk arrays arc those available from Ciprico.
Inc. (iMinneapolis, MN). Ciprico offers a fvll line of "iigh bandwidth disk arrays which
arc well suited to real-time, high bandwidth applicaticas. Ciprico's arrays all offer high
data transfer rate, no performance degradation after drive failures, and media redundancy.
There are a number of interface. redundancy, and capacity options, designed to support a
variety of applications. Table | summarizes the capabilitics of Ciprico's disk array.

Model Interface Burst Sustained Redundancy Hot Swap
Transfer Rate | Transfer Rate
6500 UltraSCSI 40 MB/sec 38 MB/see Drives No
6700 SCSI-2 20 MB/sec 19 MB/scc Drives YES
Power
6900 UltraSCSI 40 MB/sec 38 MB/scc Drives YES
Power
7000 Fibre 100 MB/sec | 80+ MB/sec Drives YES
Channel Power
Fans

Table 1 - Ciprico's RAID-3 disk arrays offer a variety of performance and redundancy

options. Users can select an array which best fits their application.

Summary

High bandwidth applications require high sustained data transter rates under all operating
conditions. RAID storage technology, while offering differing methodologies for a
variety of applications, supports the performance and redundancy required in real-time

586

applications. Of the various RAID levels, RAID-3 is the only one which provides high
data transfer rate under all operating conditions, including after a drive failure.

587

NEXT
DOCUMENT

RAID Unbound: Storage Fault Tolerance
in a Distributed Environment

Brian Ritchie
Alphatronix, Inc. - L
4022 Stirrup Creek Drive, P.O. Box 13978 o T
Research Triangle Park, NC 27709

e-mail: sales@alphatronix.com

www .alphatronix.com
919-544-0001 or 800-849-2611

FAX: 919-544-4079

Introduction

Mirroring, data replication, backup, and more recently, RAID are all technologies utilized
by corporate America to protect and ensure access to critical company data. IS managers
have taken comfort in knowing that critical data was being copied and safely stored for
future access in the event of an equipment failure, operator or user efror, or even worse, a
iocal disaster. If one of these events were to occur, this critical data could still be
transparently accessed, or at least recovered, and operations would continue. Or would
they?

A whole new set of problems have arisen as 4 corporation’s data becomes more and more
geographically distributed. Do conventional protection techniques — mirroring, data
replication, RAID, backup etc. — truly provide the level of data protection and data
accessibility needed under this changing environment? The answer to this question is —
probably not. Each of these technologies provides important benefits; but each has failed to
adapt fully to the realitics of distributed computing. The key to data high availability and
protection today is to take these technologies’ strengths and “virtualize” them across a
distributed network.

Traditional Backup and High Availability Methods

RAID and mirroring offer high data availability, while data replication and backup provide
strong data protection. If we take these concepts at a very granular level (defining user,
record, block, file, or directory types), and then liberate them from the physical subsystems
with which they have traditionally been associated, we have the opportunity to create a
highly-scaleable network-wide storage fault tolerance. The network becomes the virtual
storage space in which the traditional concepts of data high availability and protection are
implemented without their corresponding physical constraints. Let’s look at the evolution
of these technologies.

The concept of RAID has existed for several years, giving users the ability to copy and/or
stripe data to an array of disks. Because of the redundant design, data remains accessible
even if an individual disk should fail. But what if the server fails? Because the disk array
is located in a single physical location, its data is vulnerable to a “single point of failure.”

589

Using RAID, no alternate “safe™ locations from which to retrieve data exist, making it
incomplete as a reliable, uninterrupted storage fault tolerant solution.

Disk mirroring, like RAID, enables IS managers to “duplicate™ or “mirror” critical data to
a second disk so that the data can later be retrieved in the event of a primary disk failure.
This method also poses several drawbacks. For one, mirroring is not efficient; the entire
contents of the disk must be duplicated. Neither RAID nor mirroring offers the level of
granularity needed to define which users, records, blocks and/or files receive top-level
protection. Additionally, mirroring, like RAID, is constrained by physical location and
vulnerable to a single point of failure.

Backup and data replication technologies have been uscd for some time to protect
mainframe and workgroup level data. Historically, they ensured that data was always
available, but how do you back up a file system when it is hundreds of gigabytes to
terabytes in size, or when you’re collecting hundreds of megabytes of data per day? The
window of time availablec to perform these tasks is no longer enough. This magnitude of
data can’t be backed up during regular business hours because of the already high level of
network traffic versus the network pipe size available.

Emerging SFT Technology

Although there are still benefits to RAID, mirroring, data replication and backup, today’s
storage needs demand what these technologies can’t provide — high data protection and
availability across the centirc enterprise. Administrators are looking fo a new generation of
software to take high data availability and protection concepts one step further. A new
concept of network-wide storage fault tolerance (SFT) has emerged, which utilizes the
entire network's storage resources, giving administrators the ability to store multiple copies
of information at multiple sites in the enterprise, even at remote storage vaults.

SFT technology evolved from a need to ensure that data was consistently and readily
available to key users. If key users cannot get consistent and immediate access to their
critical data, then individual productivity suffers, meaning loss of money to a company.
SFT software sends key user data not to a single, same site location (as in RAID and
mirroring), but to various storage devices located throughout a company’s computing
environment, climinating any single point of failure (Figure 1). In this way, it offers an
enterprise-wide level of high data availability and data protection rather than traditional
subsystem-specific sccurity.

590

Figure 1. Data high availability and disaster recovery capability for key user data
using storage fault tolerant software.

SET soitware gives data control back to the administrator and saves time in the process.
Possible storage destinations (such as RAID or optical and tape libraries) are defined by
administrators based on various criteria including the type of data being stored. The most
valuable data (for example scientific information or mathematical calculistions) can be sent
to two, three or more local storage centers or to a revote site that’s considered “most
secure.” The soflware recognizes every storage site on the networls and marks cach site
based upon its storage performance. This process ensures that whenever data must be
accessed from a secondary source, it s retrieved automatically and immediately from the
highest performance device available, regardless of where the device is located. When data
is requested, the software automatically and transparently retricves it without any
“downtime” assoctated with restoring “save sels” to a drive. Because the software is
managed centrally, the labor associated with individually managing distributed RAIDs or
disk mirroring systems no longer exists. And because the data is always accessible,
replication and/or backup processes may be eliminated, or performed much less frequently
than before.

The “Virtual” Single Storage Environment
Ur "tke traditional technologies, Storage Fault Tolerant systems work to n.ake a distributed

environment look. act and feel, to the administrator, like a single logical environment
(Figure 21,

591

Figure 2. Creating 8 "virtusi single storage environment” from multiple, distributed p “J aystems
using storage fault tolerant software

This is important for several reasons. First, administrators are able 1o see every server and
peripheral device connected to the network and can create a higher-level storage fault
tolerant environment, across this network, than was possible before. Second. because
administrators can select which users and what data get top protection priority. new users
and data types can be casily r'~fined and added from a central location. Third, all storage
resources (across the enterprise) are visible through a single graphical user interface (GUL)
for casy viewing, manipulation and management by the administrator. This is crucial in
determining where, when, and to how many sites data should be sent. Fourth,
administrators are able to balance their data load across a heterogeneous and o stributed
network from one common GUL

SFT technology makes use of RAID or mirroring hardware already in place and offers a
whole new set of capabilities and whole new level of control for systems administrators. It
makes the need to purchase new hardware for mirroring or a new RAID box each time one
fills up obsoletc because the software makes every storage destination on the network
available. Using SFT software affords administrators, sitting at one location, the ability to
se. each new server and every additional storage device, as they're connected, so that
he/she can ensure the safe storage and availability of all crucial data across the enterprise; it
enables a geographically distributed environme! to look and act as a single logical
environment, providing network-wide storag L ault tolerance to key users’ data.

Network-wide storage fault tolerant systems also have the potential to eliminate most, if
not all, of the burden placed on traditional backup procedures. By migrating data to
multiple, redundant locations, SFT systems are already, today, capable of eliminating the
need to back up the bulk of a company’s data. As SFT systems continue to evolve, they
have the potential to entirely replace traditional backup procedures with enterprise-wide data
high availability, scaleable 10 the requirements of today's distnbuted computing
environments.

NEXT
DOCUMENT

SAM-FS -- LSC's New Solaris-Based -

Storage Management Product

f
[

Kent Angell
LSC, Inc.

380 South 200 West
PO Box 657
Farmington UT 84025
kent@lsci.com
801-451-9704

I have been involved with the computer industry for more than 20 years, and l've
identified a few constarts. These are change, growth, and an cxponentially increasing
volume of data to be managed.

My industr niche is in data management, and for that reason [am very focused on the
growth of aata volume, storage density, data granularity, and VO bandwidth. 1 think that
the experience of Cray users over the years is a relevant case study.

In the carly 1980s, Seymour Cray completed work on the Cray 2, a compuct
supercomputer that used a revolutionary liquid cooling system. The Cray 2 could crecate
ncw data at the rate of (about) 5 to 10 megabytes / second. The processing speed was
great cnough that data generation and use outpaced the machines VO channels. and the
system had to be idled cvery few hours to allow for export of newly created data. and
import of a new data set. The cycle was repeated several times a day. Data transfer was a
bottleneck, and the best that could be hoped for was 1 1o 2 gigabytes / day.

The Y-MP class of Cray machines provided a greatly increased VO bandwidth, and at the
“wme time the capacity of both vector and scalar machines was increased so that data
could be created at 10, 20, 30 ... megabytes per second. All of the previously compute-
bound problems became /O bound, and this created a logistics problem. which is -- how
do we move and store all of this data?

Automated Storage Management

Well, the traditional approach has been to keep our current stuff on magnetic disk. and
store less current information on tape. (Stuff, that's a tcchnical term we usc to describe
the other guy's digital data.) This scheme worked OK, as long as we had "managcable”
data sets, and enough operators to keep the data moving. But when data volumes get into
the range of 1 to 10 gigabytes per day, we murt have automation to handle the sheer
volume of data, to provide transparent access, to give us around-the-clock operation, and
to manage access control, that is -- security.

593

IBM marketed one of the first automated storage management systems, based on their
proprietary DFHSM software. And, the emergence of UNIX and open systems
computing led to a second generation of storage management applications, such as Bump,
developed at NRL, and UniTree, developed at Lawrence Livermore.

These were followed by a wave of architecturally similar products, such as Cray's Data
Migration Facility (DMF), which falls into the Bump class, and products in the UniTree
mold that use proprictary file systems, and operate in paralle]l with the UNIX filc system.
Both methodologics offered customers improved functionality, and satisfied many of
their customer's requirements at the time.

But the marketplace has changed. UniTree and other like products were traded like
baseball cards, and were not valued or supported by the new owners, as strongly as by the
old.

There is much that is new in today’s market, and much remains the same. Basic customer
requirements have not changed; they need stability, scalability, performance, and support
for the newest storage subsystems. Customers want to know that their data is secure and
accessible, with redundart copics for disaster recovery. But the check-off list of required
functionality has grown significantly, today's customers want more functionality than any
one software product can provide, and they want it low-cost, with guaranteed updates and
tech. support -- forever. .

A major issue for all customers is vendor stability, which means: will the software
provider be there to support the product next year - and in five years. Many place their
hopes in large companies that are presumed to be more viable, but this is inconsistent
with the dynamics of the computer industry, where growth, change and innovation arc
fueled by products developed at start-ups and small companies. In fact, both large and
small companies in the computer industry are volatile and offer volatile product lines.
Whoever the provider, customers are advised to secure softwarc that works for their
environment and is supported by established systems integrators.

SAM-FS from LSC

Which brings me to my company, LSC, which stands for Large Storage Configurations.
Our HSM product, called SAM-FS, is the happy result of an eclectic marriage of the best
elements of the old paradigm with a new

generation of code, functionality and performance. SAM-FS is a robust, high-
performance storage and archive manager, operating under Sun's Solaris 2.X operating
system.

I'll have more to say about performance later, but it's important to make a point about it

here. Performance is important in all aspects of HSM operation -- not just in VO transfer
rates.

594

LSC has designed performance into every part of SAM-FS; into file system restoration
for example. In an actual test performed by DLR in Germany (that's Germany's NASA) a
SAM-FS file system and a competitor’s system were restored from backup media after a
simulated interruption. The competitor's product required about 1-1/2 days per 160,000
files restored; SAM-FS took less than a minute per 100,000 files. We didn't do this test,
the customer (DLR) designed the test and carried it out.

Don't you think that performance like that will be important to your users or customers if
they are trying to get back into production after an interruption, maybe a server disk
crash?

SAM-FS is a full featured HSM that operates as a file system on Solaris-based machincs.
The SAM-FS file system provides the uscr with ali of the standard UNIX system utilities
and calls, and it adds some new commands, i.e. archive, release, stage, sls, sfind, and a
family of maintenance commands. The system also offers enhancements to the standard
UFS, i.e. high performance virtual disk read and write, control of disk through an extent
array, and the ability to dynamically allocate block size. This allows for very fast disk
access, up to 2X faster than ufs. SAM-FS supports all RAID levels and the use of 3rd
party file systems such as Veritas and On-line Disk Suite (ODS).

SAM-FS provides "archive sets”, which are groupings of data to be copied to secondary
storage. Archive sets can be defined (controlled) as v number of copics, when and where
each copy will be stored, how long each copy will be retained, file size included (max.
and min. sizes), and by VSN for each copy in the set.

As with other HSM systems, SAM-FS migrates files onto secondary media. In practice,
as soon as a filc is written to disk, SAM-FS will make copies onto secondary media.
These files then become candidates for release from disk cache. The archiving process
can be automatic or explicitly driven. This may not sound all that revolutionary, but there
are some very ncat things going on:

First, onc to four copies of a file are dynamically and automatically written to secondary
.aedia, either automatically or by specific command. And SAM-FS provides parallcl
threaded operation so that all files can be written to /O devices simultancously.

Second, data is written to sccondary media with the metadata included, and can be rcad
independently using standard tar on any UNIX system.

OK, now we have the filc on disk and secondary storage; what now? The SAM-FS
releaser utility can be tasked specifically to release a file, or

group of files, with immediate operation. Or the releaser can be programmed to release
files according to predetermined criteria. Files can be s “-ified for immediate release
after archiving, or can be tagged rcleasc-never, which means they are backed-up
(archived) but never leave the disk. Now, the released files are off of cache and reside
only on secondary storage in a tape library, jukebox, or on media stored on shelv-s,
possibly in a vault somewhere.

595

Files are staged onto cache to get them back. Think of the system as a virtual disk; when
the user accesses a file, he wants it as soon as possible. To do this fast you must tune the
system to take advantage of the media performance, which means to do parallel VO at full
speed. Stage requests are organized by media type and VSN, with tl.z queue organized
for most efficient access to the media. New requests are added to the queue dynamically
and are placed in the most logical place based on media type and VSN. Once a request is
satisfied, and if no other requests are pending, the tape or MO remains in the drive for a
user-defined period of time. Then it is rewound and put away.

File access can be specified stage-never so as 10 bypass the disk cache, allowing large file
access directly from secondary media, without disturbing the file mix in cache (3rd pany
transfers).

Users can access all or any part of a file, specifying the start of data (byte offset) and the
number of bytes to retrieve. Only the specified data will be returned.

Files can be archived leaving a stub on disk cache. This allows the file to be opened and
read without staging it onto disk.

When files are modified they get a new date and time and arc archived as a new file. The
pointer to the old version is deleted, and the media now has a hole.

Now, having holes in your media isn't all bad, and I suggest that you keep them. Because
as long as that hole is present in the media, the older version of the file that the hole
represents is still accessible. Sooner or later, though, you may want to recycle media.
The SAM-FS recycler will copy the remaining files onto new media, and you can reuse
the old media, or you can keep it until you don't need access to the older file versions
anymore. SAM-FS provides utilitics and procedures to access the older file versions.

Scalability

SAM-FS is a richly scalable storage management system. It can manage N file systems
on one scrver, where N is a very large number limited by 64 bit architecture. The system
can manage millions of files pcr system, though this is limited today by the speed of
UNIX and its utilitics. Later this year, LSC will implement a new search algorithm that
removes logical and performance restrictions on the number of files.

Currently, SAM-FS supports tapc and MO librarics from all major vendors, including

Grau robots with mixed media tapes and StorageTek libraries with Timberline and
Redwood drives.

596

Performance and Testing

LSC has tested the more popular tape devices under load to validate vendor claims and to
determine actual performance with SAM-FS:

Native Compressed
DLT 2000 i.2 MByte/sec. 2.0 MByte/sec.
DLT 4000 1.5 MByte/sec. 3.5 MByte/scc.
DLT 7000 not yet available for test
3490E 3.5 MByte/sec. 5.0 MByte/sec.
Redwood (FW SCSI) 9.5 MByte/sec. 14.0 MByte/sec.

SAM-FS scales in performance from one drive to simultaneous use of multiple drives as
follows:

t DLT 2000 1.2 MByte/sec. 1 Redwood 90 MByte/ser
2DLT 2000 2.4 MByte/sec. 2 Redwood 18.0 MByte/sec.
3DLT 2000 3.6 MByte/sec. 3 Redwood 27.0 MByte/sec.
N DLT 2000 n(1.2) MByte/sec. n Redwood n(9.0) MByte/sec.

This test assumes the use of multiple SCSI channels. If all drives are on the same SCSI
bus, then performance will suffer

SAM-FS was also tested to determine added overhead:

Disk writes +1%
Disk reads +2%

Tape writes +0.1%
Tape reads +0.1%

For more information about SAM-FS testing and performance contact one or both of the
following:

DLR Deutsche Forschungsanstalt fur Luft ung Raumfahrte.V.
German Remote Sensing Data Center (DFD)
82234 Oberpfaffenhofen, Germany
Phone: 49 8153 282 623
E-mail: willi@dfd.dir.de
rattei @dfd.dir.de
how@dfd.dir.de
Contact Names: Wilhelm Wildegger, Willi Rattei and John How

597

JIC-PAC ISO

P.O. Box 500

Pear] Harbor, HI 96860
Phone: (808) 471-7272
E-mail: djp@pixi.com

Contact: Dale Podoll

Summary

It is a fact of life in the storage management software business that everybody wants
something more than we can deliver today. They love what they see but they also want
something different or more of it. This is more of a job description than a problem, LSC
is a customer-driven software development company. We add the new requested features
and enhancements to our release schedule if we think its a good idea, and we get a better
product over time.

In the last release several customer-requested features were added:

APL Interface to access SAM-FS from a user application.
Both client and server versions arc provided.

Grow fs. Enables additional disk cache devices to be added to
a file system as it grows. Additional disk devices can
be added without system reinitialization.

Stage All: Provides Associative Staging. Filcs in a common
directory with this control set are all staged when any one of
the set is accessed.

In the next release are more customer-requested features:

Checksum Verification: Enables users to verify that data on
removable media has not been altered.

: Allows recycling based on archive set
thresholds, in addition to recycling based on robot thresholds.

API Enhancements: Making the APl jump through hoops.

598

The Last Word

A major reason that customers want HSM is for disaster recovery, and SAM-FS has some
unique capabilities for data recovery in case of catastrophic failure:

First, if the disk cache dies, the system can be reinitialized and back on line in a matter of
1 to x minutes depending on the number of files and speed of the tape device reading the
last inode dump. Average performance is 1 minute / 100K files in the SAM-FS file
system.

Second, if a file is damaged, the archive copy is used. If the archive copy is damaged,
SAM-FS will look for a second copy. Older versions (holes) can be accessed using the
SAM-FS interface.

Third, if the primary server installation is destroyed, the system can be reinitialized using
replacement hardware and a backup copy of the archive maintained specifically for this
contingency in a remote vault.

Last, it is important to tune the storage management system with disaster recovery in
mind, i.c. files that have not been migrated to secondary storage will be lost.

People who try SAM-FS like it, so I'd like to ask you to give it a ry. We have demo
software available if you want to wring it out.

599

NEXT
DOCUMENT

Use of HSM with Relational Databases

Randall Breeden, John Burgess and Dan Higdon
FileTek, Inc.
9400 Key West Avenue
Rockville, MD 20850
jgb@filetek.com
Tel: 301-251-0600
Fax: 301-251-1990

Hierarchical Storage Management (HSM) systems have evolved to become a critical
component of large information storage operations. They are built on the concept of using
a hierarchy of stcrage technologies to provide a balance in performance and cost. In
general, they migrate data from expensive high-performance storage to inexpensive low-
performance storage based on frequency of use. The predominant usage characteristic is
that frequency of use is reduced with age and in most cases quite rapidly. The result is
that HSM provides an economical means for managing and storing massive volumes of
data.

Inherent in HSM systems is system managed storage, which has the system performing
most of the work with miuimum operations personnel involvement. This automation is
generally extended to include:

e« Backup and recovery
e Data duplexing to provide high availability
e Catastrophic recovery through use of off-site storage

Types of HSM

HSM can be broken into two main categories based upon the level of the objects that are
accessible through the HSM system: file level and record level.

File Level

Most of today’s HSM systems operate on a magnetic disk file level basis. In these HSM
systems, when data is migrated off magnetic disk, the associated directory entry remains
while the actual data is moved down the hierarchy. When the end-user or end-user
application needs the migrated data, the file containing the data is opened, and the data is
migrated back to magnetic disk. For example, if transaction information for a deposit
that occurred a year ago is required, the HSM system copies the entire file back to the
magnetic layer, and then the application extracts the specific information it needs.

Record Level

The second type of HSM system operates on a record level access basis. In these HSM
systems, data is written with one or more keys or a record number. Then when the end-
us2r or end-user application needs information, the file containing the required data is
opened, a key or record number is supplied, and the associated record is transferred. The
main difference between file and record level HSM systems is that in record level HSM
systems, data can be accessed directly from the storage mec ‘a without having to be

601

restored to the magnetic layer first. This is particularly useful when storing billions of
small objects such as user transactions, phone calls, and statements.

The following table compares the performance of file and record level access HSM
systems.

Action File HSM Record HSM
‘ — (seconds) (seconds)

Mount 13pe 5 (b
Copy Data to Mag (500 Mbytes) 100 NA
Perform high-speed search for NA 10
block

Select 1 Record 1 1
Total 116 26

The preceding table shows a significant performance advantage for record level HSM
when only a small object is needed. This is even more significant when optical disks are
used instead of tape. This performance improvement can make the difference between
being able to provide an online response versus a batch and call back response. Another
significant advantage is that the storage drives used to support the accesse. are in use
much less for each request enabling many more requests to be processed per day.

Record level HSM has been used in mainline storage management for a number of ycars
for microfiche replacement, online report viewing, IBM VSAM archiving and
application-based database extension.

HSM In Databases

HSM has seen little use with databases. Only small databases are built on the file system
enabling the use of file level HSM. In these cases, the delay required to retumn the file
(table) usually makes it impractical.

StorHouse System

StorHouse is the first relational database system that was developed to be fully integrated
with a record level HSM system (DB/HSM™). It is built on the proven base of the
FileTek® Storage Machine® (SM) system, which has been in operational use in nearly onc
hundred sites for managing close to 200 TBytes of online storage.

StorHouse has a high volume data loader for Direct Channel loads from mainframes and
FTP loads from the network. It can process 10s of GBytes of table data per day and
concurrently build all required indexes. It can build massive tables spanning many years
and holding 10s of TBytes. Both hash and value indexes are supported to enable fast
exact match retrievals and range-based retrievals. Indexes are multilevel and can reside
separately in the storage hierarchy. This enables indexes to reside on high performance
storage (RAID or optical) while data resides on less expensive storage (optical or tape).

602

StorHouse contains its own SQL query processor, optimizer, execution manager and
database gatcways. The SQL query processor, optimizer and the Storage Machinc cnsurc
that SQL queries arc processed such that minimal use of robotics (optical and tape) is
required. This support includes the use of large magnetic disk performance buffers that
enable the storage of 100s of GBytes of the most active portions of indexes or tables to
further enhance performance. These performance sensitive capabilitics are extremely
important because database queries executed against very large databases (VLDBs) can
be very demanding.

The following diagram illustrates the various StorHouse components.

Database gateways provide access to StorHouse from many different databasc systems.
Today, StorHouse supports DB/2® sing DRDA™, EDA/SQL™ and ODBC™ In the
future, StorHouse will support several other yet-to-be-announced middleware standards.
StorHouse and the gateways provide for full sharing of data from different database
environments. For example, data stored from MVS® DB/2 can be accessed by ORACLE"
environments. This open query capability enables ad hoc querics to be processed online
in support of all vperational systems.

StorHouse will have a high volume data extractor that can access 1{)s of GBytcs per day
for bulk loading into RDBMSs or analytical tools. This will provide data for decision
support applications whether they be OLAP or Data Mining.

Summary

StorHouse provides a low-cost storage alternative for RDBMS data using the Storage
Machine’s automatic managed storage hicrarchy. StorHouse climinates the nced for
separately archiving SQL databases to tape and supports SQL access to very large and
ultra large databases. With standard protocol access from a varicty of computing
platforms, StorHouse expands the media options by migrating RDBMS data tables from
expensive mainframe DASD and client/scrver magnetic disk to lower-cost reusable or

603

permanent storage. By providing concurrent access to relational data from multiple host
cnvironments, applications can truly share data without having to maintain multiple
copies. This improves service, reduces the cost of magnetic storage, frees up existing
magnetic storage for other applications and eliminates the use of tape as an additional
archive method for database data. Furthermore, network and chennel activity is reduced
because StorHouse returns only the requested result set.

The following diagram shows StorHouse's role in an information technology
environment.

Decision Support

NEXT
DOCUMENT

-

RAID-S 7. ~hnical Overview: Raid 4 and 5-Compliant Hardware and
Software Functionality Improves Data Availability Through Use of
XOR-Capable Disks in an Integrated Cached Disk Array

Brett Quinn
EMC Corporation
Hopkinton, MA 01748-9103
Internet: quinn_brett @isus.emc.com
Web Page: www.emc.com
Telephone: 508-435-1000
Fax: 508-435-8903

1. Introduction

1.1 Objective and Scope

The purpose of this paper is to provide a technical description of RAID-S. It is intended
to give the readsr an understanding of how RAID-S is architected and implemented in the
EMC Symmetrix 3000/5000 scries Integrated Cached Disk Array. Topics include a
RAID-§ taxonomy, configuration considerations, operational characteristics,
performance, and implementation guidelines.

It should be noted that the RAID Advisory Board granted EMC'’s petition to use the
conformance logo for RAID Levels one, four, and five for the Symmetrix series of
ICDAs. Use of the conformance logo for RAID levels four and five were also granted for
the Extended On-line Storage ICDAs in June 1996. Symmetnx is considered RAID
Level onc-conformant when configured with mirrored devices, RAID Level four-
cor‘ormant when RAID-S is configured without Hyper-Volume Extension, and RAID
Level five-conformant when RAID-S is configured with Hyper-Volume Extension.

The Symmetrix series of Intelligent Cached Disk Arrays represent a family of information
storage and retrieval systems available in a broad range of capacities to address current
and future business and scientific requirements. Systems provide instant and dependable
access to mainframe and open platforms. For further details refer to EMC’s web page.

605

1.2 What is RAID-S?
1.2.1 Improving data availability

RAID-S (Redundant Array of Independent Disks-Symmetrix) is a combination of
hardware and software functionality that improves data availability in Symmetrix 3000
and 5000 series ICDAs by using a portion of the array to store redundancy information.
This redundancy information, called parity, can be used to regencrate data should the data
on a disk drive become unavailable.

1.2.2 Flexible availability options

RAID-S is the newest RAID saiution to be delivered for the Symmetrix ICDA. RAID-1,
also called Mirroring, was first delivered in 1991. Compared to a mirrored Symmetrix.
RAID-S offers EMC users more usable capacity than a mirrored system containing the
same number of disk drives. Also, with the introduction of RAID-S, users can now select
the level of protection they desire for data stored in the Symmetrix. Within the same
Symmetrix system, data can be protected via RAID-S, Mirroring, SRDF, and/or Dynamic
Sparing.

1.2.3 Technological innovation

RAID-S employs the same tcchnique for generating parity information as many other
commercially available RAID solutions, i.e., the Boolean operation EXCLUSIVE OR
(XOR)'. However, EMC is the first vendor to reduce the overhead associated with parity
computation by moving the operation from controller microcode to the hardware on the
disk drive itself. This is done through the use of XOR-capable disk urives. This also
positions RAID-S to benefit from future improvements in internal disk subsystem
communications protocol performance when SCSI is supplanted by fiber channcl
technnlogy.

1.2.4 Prerequisites
RAID-S is transparent to the host operating system. The prercquisitcs required for RAID-

S are a 3000/5000 series Symmetrix with XOR capable disk drives and the appropriate
Symmetrix microcode level.

2. RAID-S Taxonomy

Like most Symmetrix features, RAID-S introduces new tcrminology and concepts that
necd to be clearly understood to properly describe the functions and componcnts of

606

RAID-S. Figures | and 2, will be referenced in the following discussion of RAID-S
terms.

2.1 Group

A RAID-S group is the set of four or eight (EOS systems only, see section 2.7) physical
disks within a Symmetrix system that are related to each other for parity protection.
Current implementation requires that all members of a RAID-S group must be attached to
the same disk director. Figures 1 & 2 both depict RAID-S groups of four physical devices
each. Note that each of the four disks are on a different Disk Director SCSI bus.

2.2 Logical Volume

A logical volume is a unit of storage implemented on a single Symmetrix disk drive.
When Hyper-Volume Extension (HVE) is not used, the size of a logical volume is usually
the same as a physical volume. With HVE, up to eight logical volumes can exist on a
physical volume.

2.3 Rank

A rank is the set of logical volumes related to each other for parity protection. Each
RAID-S group supports a minimum of one rank, and with HVE enabled, a maximum of
eight ranks. Figurc 2 shows a RAID-S group consisting of four 9 GB drives with four
ranks defined across the group. A rank is the “horizontal layer” of logical volumes and
utilizes all four SCSI paths attached to a disk director.

A rank is equtvalent to a “redundancy group stripe” as defined by the RAID Advisory
Board.

2.4 Data Volume

A data volume is similar to a traditional logical volume in Symmetrix terminology. It is
the “virtual volume” image presented to the host operating system and defined as a
separate unit address to the host. All data volumes within a rank must be the same size.
There can be a maximum of 512 data volumes in a Symmetrix.

It is important to note that RAID-S does not “stripe” data across members of a rank as is
done in traditional RAID implementations. Each data volume emulates either a complete
3380 or 3390 device or a completc FBA logical volume mapped to an Open Systems
host. This is a key differenuator because it allows the group to sustain the loss of more
than onc member and still service requests from all the surviving members. In RAID 4/5
implementations which stripe data, the loss of more than one member would result in data
loss for the entire group.

607

This “direct” mapping of disk images to disk drives also allows standard performance and
tuning techniques to be used to manage the volumes in the rank.

2.5 Parity Volame

A parity volume is a logical volume which holds the parity information for the rank. It
must be the same size as the data volumes it supports. Parity volumes do not have unit
addresses and are transparent to the host software. As is true with M2" volumes in a
mirrored Symmetrix, parity volumes are not included in the 512 device limit within a
single Symmetrix system. In fact, the parity volume is referred to as an “M2” volume and
is associated with three “M1” data volumes in a 3:1 rank. This is illustrated in figure 1.

When using HVE, parity volumes are distributed amongst the members of a RAID-S
group, as shown in figure 2. This distributed parity provides for improved performance
over a single physical volume which could become a performance bottleneck in a heavy
write workload.

2.6 Modes of Operation
2.6.1 Normal Mode

When a RAID-S rank is operating with all members functioning it is s2id to be operating
in normal mode.

2.6.2 Reduced Mode

When a RAID-S rank is operating with one failed data volume it is said to be running in
reduced mode. Parity protection is suspended for the rank. Referring to figure 1, the
failure of device 00 would force the rank to operate in reduced mode. In figure 2, the
failure of device 00 would cause the first three ranks to operate in reduced mode.

2.6.3 Non-RAID Mode

When a RAID-S rank is operating with one failed parity volume it is said to be - unning in
non-RAID mode. As in reduced mode, parity protection is suspended for the rank. Again
referring to figure 2, the failure of device 00 would cause the fourth rank to operate in
non-RAID mode.

608

2.6.4 Regeneration

When a data volume fails, the data on that volume is reconstructed by XORing the parity
volume with the remaining data volumes in the same rank. This process is called
regeneration and is used in place of the normal READ command when one data volume
has failed. The regenerated data is placed on the parity volume of the rank. Any
subsequent request for the data will be serviced by the parity volume, which is acting as a
data volume for the regenerated data.

Referring to figure 1, if device 01 were to fail, the data on volume B would be
regenerated by computing the exclusive OR of the data on volumes A, C, and the parity
volume.

~09

2.6.5 Rebuild

When a parity volume fails, RAID protection is suspended for the rank. When the failed

device is replaced as part of a service action, the parity volume is reconstructed. This
process is called rebuild.

BANK
Data Volume Data Yolume Data Yolume Parity Yolume
™ M ML ™M
Figure 1: RAID-S Group w/o Hyper Volume
RAID-S Group

RANK

Data

Volume

Parity

olume

Figure 2: RAID-S Group w/Hyper Volume

610

2.7 EMC Extended On-line Storage (EOS)

In March 1996, the flexibility of RAID-S design and MOSAIC 2000 architecture was
demonstrated with the announcement of the EOS base product (model EOS-90XX). EOS
is a high capacity storage solution intended for archived data that is typically accessed in
a read only mode, and where high performance is not a requirement. An EOS disk
storage array offers either Dynamic Sparing or RAID-S protection for the disks in the
system. The group size for EQOS systems was expanded from 4 disks (3 data + 1 parity) to
8 disks (7 data + 1 parity). This has the effect of increasing the amount of storage
available for user data from 75% of the array’s capacity to 87.5%.

In July 1996, the EOS product line was expanded with the introduction of the EOS YR
models (EOS-9RXX). EOS 9R models offer improved performance over the base EOS
models and support some of the advanced microcode features of the Symmetrix.

In both the EOS base and EOS 9R models, the number of data volumes in a rank was
increased from 3 to 7. A 7+1 RAID-S group is depicted in figure 3 below. (Note that
each SCSI bus now contains two members of a RAID-S group)

RAID-S in EOS systems, as in Symmetrix, can be implemented as either RAID level 4 or
RAID level S as defined by the RAID Advisory Board. When implemented without
Hyper-Volume Extension it conforms to the definition of RAID level 4. When
implemented with Hyper-Volume Extension, as in figure 3, it qualifies as a RAID level §
array.

611

Disk Director 1

Figure 3 RAID-S 741 Group size in Extended On-line Storage (EOS) systems

3. Configrring RAID-S

3.1 Host addressable volumes

In a RAID-S Symmetnx, only data volumes are host addressable. Consequently, the
number of host addresses is less than the number of logical volumes defined in the
Symmetrix. Using a 5100-9016 (with all volumes RAID-S protected) as an example, the
number of host addressable volumes is computed as follows: (each device contains 3
logical volumes, rank size is 4 volumes, 3 data :1 parity)

16 devices X 3 logical volumes/device = 48 logical volumes
25% of volumes are panity (3:1) = 12 parity volumes
48-12 = 36 host addressable volumes

3.2 Ranks and SCSI buses

Normally RAID-S configurations will have a rank size of four, with three data volumes
and one parity volume per rank. In these configurations each member of the rank will be
on a different SCSI bus behind the same disk director. This improves the performance of
the rank by reducing SCSI bus contention during XOR calculations. The only exception
to this is EOS systems which support 7+1 ranks. These implementations support two
members of a group per SCSI bus.

3.3 HVE considerations

During installation and configuration of the Symmetrix 3000/5000, parity volumes are
distributed across all devices in the RAID group. Obviously, the maximum number of
logical volumes that can be defined on each physical device, without having two parity
volumes on one device, is four. However, the maximum number of hyper-volumcs
allowed, including parity volumes, remains eight.

3.4 Intermixing with Local Mirroring

RAID-$ groups can coexisi with mirrored pairs in the same Symmetrix. It is important to
remember that RAID-S groups must be defined behind the same disk director, while
mirrored pairs must be defined behind different disk directors. In addition, RAID-S
volumes cannot be locally mirrored, and locally mirrored volumes cannot be part of a
RAID-S group.

It is possible to dynamically reconfigure a mirrored configuration to RAID-S and vice
versa.

3.5 SRDF and SDM Support

RAID-S is supported with the Symmetrix Remote Data Facility and the Symmetrix Dita
migrator. This support is described below.

3.5.1 Symmetrix Remote Data Facility

SRDF provides the capability to remotely mirror logical volumes to another Symmetrix
system. This logical volume approach is maintained in a RAID-S environment. SRDF
does not rcquire that a RAID-S rank or group be remotely mirrored in its cntirety.
Rather, SRDF simply allows a logical data volume in a rank to be remotely mirrored to
another system where it can be protected via local mirroring, RAID-S, and/or dynamic
sparing. Note that parity volumes are not remotely mirrored. SRDF views this remote
copy (target volume) of the data as a third copy which can be accessed via the SRDF link
in the event that the local copy (source volume) becomes unavailable.

613

This offers the benefit of using the remote copy of a volume to access data in the event
the local copy is unavailable, thus avoiding the overhead of RAID-S regeneration when
accessing a failed volume.

3.5.2 Symmetrix Data Migrator

SDM is a Symmetrix microcode based product which allows the direct migration of data
from an existing, installed control unit (called the “donor”) to a Symmetrix (called the
“target”). During a migration, the target Symmetrix is connected to a mainframe host and
the donor control unit is connected to the Symmetrix. Data is then migrated from the
donor to the target Symmetrix in either an on-line or off-line fashion. Parity computation
can be performed during migration (the default), or after all data has been migrated to the
data volumes in group.

The introduction of RAID-S protected target volumes into an SDM migration does not

impact the configurability of the target Symmetrix. Donor control unit volumes arc
mapped to target Symmetrix volumes just as they were in a mirrored scenario.

4. RAID-S Operational Characteristics
4.1 Normal Mede operation

4.1.1 Write Operations

Fust write: As with all Symmetrix operating modes. 100% of writcs arc fast writes
«.id are satisticd in the cache.

Destaging write: Writc operations 10 a RAID-S rank are completed using a Read-
Modify-Write sequence oi 1/0 operations as depicted in figure 4 and described below.

614

CACHE f———» DIEIIESC:KTOR

Figure 4: Read-Modify-Write Sequence

la

The Disk Director begins the Read-Modify-Write sequence by sending the new
data to the data drive using a new SCSI command called an XOR READ. This
command rcads the old data into the disk’s buffer, XOR’s it with the new data
(creating difference data), and writes the new data in the disk.

b

Simultaneously, the DD sends the parity drive another new command called an
XOR WRITE (command phase only). This command instructs the parity drive to
read the old parity into its buffer in preparation for XORing with the difference
data from la.

The difference data is sent to the DD for transfer to the parity drive.

The DD sends the difference data to the parity drive during the data phase of the
previously issued XOR WRITE command. The difference data is XOR’d with the
old parity waiting in the buffer, and the resulting new parity is immediately written
to the disk.

This

Read-Modify-Write sequence constitutes the “write penalty” in RAID-S. It is

significantly different from the write penalty in other RAID 4/5 implementations. The
typical RAID 4/5 approach requires four discrete, sequential /O operations be executed
by the controller:

1. Read old data
2. Read old parity
3. Write new data

615

4. Write new parity
In addition, two processing steps must be executed by the controller microcode:

5. XOR old data with new data (creating difference data)
6. XOR difference data with old parity (creating new parity)

In contrast, RAID-S requires only two discrete sequential YO operations be executed by
the controller.

1. Writc new data
2. Write difference data

The design of RAID-S distributes the work of computing parity between the disk dircctor
and the disk drives, using :ie XOR chip and the disk level buffer. The disk containing
the data volume performs the read of the old data, the XOR to compute difference data,
and sends the difference data to the disk director. The disk containing the parity volume
reads the old parity (at the same time that the data dri-’ is reading the old data), XOR’s it
with the difference data received from the controller, and writes the new parity to the
disk.

The parallelism introduced into the parity computation process through the use of XOR
drives allows the “controller” (disk director) to do only half the number of back-end I/Os
as competitive RAID solutions. This reduces the impact of the writc penalty significantly
and improves the overall performance of RAID-S compared to competitive
implementations.

4.1.2 Read Operations

Read hits: Read hits ar- -rocessed via the cache as in normal Symmetrix processing.

Read Misses: Rcad misscs arc directed to the disk dnive and processed as normal
Symmetrix read misses. Ther: is no XORing of the data, and only one disk drive is
involved in servicing the request. This is a significant advantage over other RAID 4/5
implementations that “stripe” data across multiple disk drives. In these implementations
more than one disk drive may be required to service the request.

4.2 Reduced Mode Operations

Note: In reduced mode operations parity protection is suspcnded for the -ank. No new
parity data is written.

616

4.2.1 Failed Data Volume

Read Miss Operation: Read requests not satisfied in the cache arc called read misses, and
are serviced by the disk drive. When read requests are made to a failed member of a rank
the data must be regenerated to service the request. The reger.cration process is depicted
in figure 5.

@

“DATADISK
(was Parity Disk)

Leamenicd D

Figure 5: Regeneration Function

1 Regencration begins with the DD issuing a standard SCSI READ command to the
first surviving member in the rank and receiving the data back from the drive.

2 | The data is sent to the second member using an XOR READ command with a hit
set to instruct the drive to not write the data to the disk, but allowing it to perform
the XOR computation with the data on that disk drive. The XOR'd data is sent
hack to the DD.

3 | The DD issucs another XOR READ sending the XOR’d data 1o the last drive in
the rank (the parity drive), again with the bit set to prevent the data that was sent
from being written to the disk. The data is XOR'd with the data on the disk and
the result (the regencrated data) is sent back to the DD. In addition to being sent to
the DD to s»rvice the request, the regenerated data is written 1o the parity drive as
data. This improves the performance of subsequent rcquests for the data. The
parity volume is now considered a data volume for the affected tracks.

617

Write operations: De-stages to the failed member of a rank first require that the data
be regenerated in preparation for the write operation. The track(s) which cor.tains the
data to be writ.en is regenerated by Boring corresponding tracks on the surviving data
volumes and the parity volume. The track i then updated with the new data and written
to the parity volume as data. As with read operations, this is done to improve the
performance of subsequent requests for the data.

4,2.1.1 Mediaerrors

In the event of a media error, the affected wacks will be regenerated and piaced on the
parity volume as data. This condi*.on will cause the Symmetrix to place a remote service
call to the Customer Support Center. The Prod ct Support Engincer (PSE) at the support
center will determine if a disk drive has been identified for replacement and dispatch a
Customer Enginecr. Once on site, the CE will invoke the Symmetrix Hot Replacement
procedure on the service processor. The logical volumes on the disk being replaced will
be placed in a not ready state and the associated ranks will begin either reduced mode or
non-RAID mode of operation (depending on if the logical volume which was made not
ready contained data or parity information). Once the new drive is in place, the rebuild
process (described below) begins.

4.2.1.1.1 Manual Sparing

When the Symmetrix places a remote service call to report a disk drive problem, the PSE
has the ability to invoke » spo:ing operauun to a spare disk iocated anywhere in the
system. This sparing operaiiun will copy the data volumes from the failing disk to the
spare, regenerating data where necessary to ensure a complete copy of the data volume is
placed on the spare disk While the array is in this spared :tatc no new parity is
generated, and the array operates in non-RAID mode.

When the service action is complete the data volumes will be copied to the new disk ang
parity will be rebuilt where necessary to return the array to normal opcration,

4.2.1.2 Dynamic Sparing

The Dynamic Sparing function exploits an architectural enhancement made to Symme:rix
which allows up to four copies of data to be maintained in the subsystem. As a result of
this change, the minimum number of spares requircd to provide dynamic sparing
protection for RAID-S was reduced from one per disk director to thiee for the entire
subsystem. These spares may also be used to protect local mirrors or the local copy of a
remotely mirrored pair. The spuaring process itself was also improved and now works »
follows:

When the Symmetrix detects the pending failure of a disk drive it stablishes a mirrored
relationship between the data volumes in the RAID-S group and threc spare drives (which

618

can be focated anywhere i the systemd. The data volumes on the unaftected disks, along
with readable data volumes from the fuling disk . are copied to the spare disks. Data from
unrcadable volumes is regencrated and placed on the panty volumes of the unaitected
disks as well as on the spare disks (see figure 6 belows No panity data 1s copred o the
spare disks and no parity gencranion occurs sinee all the dats is now protected via
mirroring.

RAID-S (xtqup M1’s

1Panty volumies
hoecone
data volumes

Spare | Spare 2 Spare 3

Figure 6: Dynamic Sparing

4.2.1.2.1 Partial Dynamic Sparing

In an cftort to provide as much data protection as possible, the dynamic sparing process
will also invoke wien only one or two dynamic spares are defined or avaiable at the tme
of the fatlure. In this case the Symmerrix will regencrate the data volumes from the failed
disk and write the data to the first spare disk. Daia from one unaffected disk will be
copied 1o the sccond spare and murrored relationships will be established. In this way
some of the data continues to be protected from a second disk failure via mirroning.

The array will then operate as if in reduced made. Any VO 1o the failed volumes. or any
write /O 1o the surviving volumes, will cause a regeneration of data o de panty volumic.
Note that i this case data 18 not regenerated to the parity volumes automatically. but
rather on demand. Since a full complement of spares was not available {only one or two
were) full misroring protectien for the group couid not be achieved, and the systerm will
not meur the overhead of completely rebuilding the dat. volumes onto the parity volumoes

This will reduce the parity rebuild workload when the service action is complete and
return the array to rormal operation as quickly as possible

When the service action is complete and the new disk is in place, the data volumes are
copied onto the replacement disk and a parity rebuild is performed for all parity volumes
in the group.

This approach to full and partial dynamic sparing provides scveral benefits:

o Elapsed ume for rebuild is lower since less reconstructict. via XOR is required

o Performance during rebuild is improved through the usc of mirroring.

o The amount of storage dedicated to the sparing function is less, especially in larger
configurations.

4.2.2 Failed Parity Volume

The failure of a parity volume docs not place a rank in reduced mode. All VOs are
serviced from the surviving data volumes as normal non-RAID requests, and parity
protection is suspended for the rank. The disks then operate as normal non-RAID
devices. When the parity volume is replaced, the rebuild function restores the volume as
a parity volume and parity protection is resumed for the rank and RAID-S operating mode
is restored.

4.2.3 Surviving Members

Read Miss Operations: Read operations to surviving members in a reduced mode
rank arc cquivalent to non-RAID operating mode.

Write Operations: ~ Write operations t0 a surviving member in a reduced mode runk
triggers the regeneration of corresponding tracks for the failed member, and the writing of
the regenerated data to the parity drive. Once this 1s complete. the write VO is allowed to
completec to the surviving member. The reason that tne failed member's data is
regencrated first is becausc writing data directly to a surviving mcmber would
immediately invalidate the parity data. Rather than allow parity data to be invalid, the
Symmetrix replaces it with valid data for the failed member, thus ensuring data intcgrity
in the rank and improving performance both for future requests to the failed member and
the resynchronization of the failcd member after a service action.

Note: Gradually, the parity volume will take over for the failed data volume and service
all YO intended for the failed volume. All read and write requests to the failed volume. as
well as all write requests to the surviving volumes, result in regencrated data being
written to the parity volume.

620

S. Rebuild

When a drive in a RAID-S group is replaced, the rebuild process begins. Rebuild consists
of distinct phases. The first phase is the restoration of the data volumes on the affected
disk drive. This can occur in one of two ways; cither regenerated data from the parnty
volume is copied to the data volume, or the data is regenerated from the surviving
members. The second phase is the rebuilding of the panty volume, and 1s depicted in
figure 7. During parity rebuild, only locations that stored regencrated data during the
reduced mode operation are rebuilt. This helps to improve the overall rebuild time for a

group.

DISK
DIRECTOR

Figure 7: Rebuild Function

1 Rchuild begins with the DD issuing a standard SCSI READ command to the first
data volume in the rank and receiving the data back from the drive.

2 The data is sent to the second data volume using an XOR READ command with a
bit set to instruct the drive to not write the data to the disk, but allowing it to
perform the XOR computation with the data on that disk drive. The XOR’d data is
sent back tc the DD.

3 The DD issues another XOR READ sending the XOR'd data to the third data
volume drive in the rank again with the bit set to prevent the data that was sent
from being written to the disk. The data is XOR’d with the data on the disk and
the result (parity for the rank) is sent back to the DD.

4 | The DD issues a standard SCSI WRITE command to write the rebuilt parity to the

621

disk drive.

The rebuild process is invoked by a CE or PSE as part of the disk drive replacement
procedure. During the rebuild process requests can continue to be serviced by the rank,
however, parity protection is not restored to the rank until the rebuild operation is
complete. The rebuild process is a background task that is secondary to servicing host
/O requests.

6. RAID-S Performance

6.1 RAID-S Performance Advantages

RAID-S’ unique implementation and gencral Symmetrix aschitecture together offer
significant performance advantages over traditional parity based RAID implementations.
These advantages are summarized below:

Large Cache

Symmetrix large central cache continues to provide customers with very high read hit
rates regardless of the RAID protection scheme implemented in the “back-end” of the
subsystem. Cache resources are not used to store or compute redundancy data (i.c..
parity or mirrored data).

100% Fast Write

The “cache all” philosophy of the Symmetrix ensures that all writes are fast writes
thus ensuring the highest possible “front-end” performance for write requests. Since
RAID-S made no changes to the front end of the system, the benefits of this
architecture continue to accruc for RAID-S system.

Distributed XOR

The use of XOR capable disks in RAID-S improves the performance of the Read-
Modify-Write sequence for parity generation compared to traditional R AID schemes.
By reducing the workload on the controller, back end path contention is also reduccd.,
contributing to {aster performance when operating in normal mode.

Segregated RAID Groups

RAID-S groups are scgregated from each other in the back cnd of the system.
Rebuild activity on one group does not impact the performance of the remainder of
the groups in the system.

622

* Tuning
RAID-S keeps logical volumes intact by exploiting the Symmetrix Hyper-Volume
Extension feature to map logical volumes to one and only onc member disk. As a
result, traditional performance wning techniques that have been employed by storage
administrators for decades can be used to tune RAID-S systems.

6.2 Performance Considerations

As with all Symmetrix ICDAs cache size and cache friendliness of thc workload have a
major impact on the performance delivered by the Symmetrix. Standard cache sizes for
RAID-S Symmetrix systems have been adjusted upward to ensurc a consistent level of
performance when workloads have a heavier write orientation. As is true for all parity
based RAID implementations, RAID-S is best suited to workloads whose write content is
k xs than 25%.

‘1he configuration flexibility of Symmetrix is an important fcature in ensuring good
petiormance for all workloads. The ability to configure a pool of RAID-1 protecied
volumes in a Symmetrix that is mostly protected via RAID-S is called “scalable
availability”, and should be used to support applications with very high write content.
such as disk to disk copics and large sequential file loading operations.

Having said that, however, it is important to keep in mind that a cache hit is a cache hit
and in this respect RAID-S Symmetrix performs in the same manner as non-RAID and
mirrorced Symmetrix. Understanding workload charactenistics, and exploiting scalable
availability where appropriate, will help ensure successful RAID-S implementations

6.2.1 Normal Mode

For rcad miss /Os. RAID-S performance in normal mode is equivalent to non-RAID
performance.

During periods of high utilization, KOs m=y be impacted and experience a modest
increase in responsc time. It is impossible to specifically quantify the effect since it is a
function of read/write ratios, VO rates, cache size, data blocksize, and duration of the high
demand. Like other parity based RAID implementations, RAID-S does exhibit a write
pcenalty, however the basic design of the Symmetrix (i.c. large cache) and the innovative
approach taken with RAID-S minimizes the impact compared to traditional RAID
implementations. Overall performance of RAID-S will obviously be dependent on the
IO rate and write content of the workload. Higher VO rates and write content (>25%)
may result in longer elapsed time due to the write penalty under these conditions.

623

6.2.2 Reduced Mode

Reduced mode performance of a RAID-S group is dependent upon several factors
including: which volumes in the rank are being accessed, the number of volumes affected
by the failure, the lavout of the ranks withia the Symmetrix, the /O rate, and the
read/write ratio of the workload.

Reads misses and de-stages to the failed members invoke the regeneration process for the
first access to each track. De-stages to surviving members also invoke the regeneration
process for the failed member (if the corresponding tracks on the failed member have not
already been regencrated).

Reads misses to surviving memt >rs are treated as normal non-RAID V/Os.

These variables, the types of VO and which volumes are being accessed, combine to make
it difficult to predict the exact performance of a reduced mode RAID-S group.

6.2.3 Rebuild Mode

The performance metrics of interest in rebuild mode are response time for host VOs and
the elapsed time of the rebuild (i.c., the wall clock time spent retuming the array o
normal mode). These metrics are affected by the amount of host /O, the distribution of
that /O between the replacement disk and the other disks in the array, and the read/writc
ratio of the workload.

Elapsed time is also directly impacted by the size of the disks in the RAID-S group.
While this may seem obvious, it is often overlooked, especially when comparing differcnt
vendors RAID-5 implementations. RAID-S uses either 4GB or 9GB disks. A rebuild can
clearly execute faster on a 4-GB disk since less than half the amount of data is being
rebuilt. It is inaccurate to compare the rebuild times of a four disk array utilizing 4-GB
drives with a four disk array which uses 9-GB drives.

It is also important to remember that the performance impact of a RAID-S rebuild is

isolated to the group undergoing the rebuild. The remaind-r of the system is essentially
unaffected.

624

6.2.3.1 Symmetrix RAID-S Rebuild performance

“Rebuild” is one of the three modes of operation in a RAID-S protected Symmetrix. (The
other two modes are “normal” and “reduced”). A RAID-S group enters rebuild mode
when a failed member of the group is replaced with a new disk and that new disk must be
populated (rebuilt) with uscr data and panity re-calculated for the group.

6.2.3.1.1 RAID-S Rebuild Differentiators

RAID-S is implemented on a disk director level and utilizes all four SCSI buscs on a
disk director (i.e., a RAID-S group cannot span disk dircctors). Consequently. the
impact of rebuilding a RAID-S group is isolated to the group undergoing the rebuild
and does not affect the rest of the subsystem.

Also, RAID-S is the only parity based RAID system on the market that does not maintain
parity when running in reduced mode. Rather than maintain parity when operating with a
failed member, RAID-S places regenerated data on the parity volume so that subscquent
requests for the same data do not incur the overhead of regencration. This feature is
exploited during rebuild mode since a new disk can be pop ated by copying previously
regencrated data, rather than by incurring the overhead of a rebuild. This helps reduce
responsc times for host /0 requests during the rebuild operation.

Further, RAID-S rebuild runs as a lower priority task on the disk director, so host VO is
serviced before rebuild 17O, resulting in lower response times for host I/Os.

" For a detaited description of XOR see one of the following:

*“A Comparison of RAID-1 and RAID-5" ESG Marketing Corporate SE Sevices [February 13, 1995)
“What is Exclusive OR?” SalesAdvantage [February 27, 1995)

“The RAIDBook,” The RAID Advisory Board [Scptember 1. 1994)

" M2 1s the term used to describe the second volume in a mirrored parr.

625

NEXT
DOCCUMENT

2 - 2 2. £
'3
Large Format Multifunction 2-Terabyte Optical Disk Storage System

David R. Kaiser, Charles F. Brucker, Edward C. Gage,
T.K. Hatwar, George O. Simmons

Eastman Kodak Company
460 Buffalo Road
Rochester, NY 14652-3816
kaiser@kodak.com
Tel: 716-588-5589
Fax: : 716-588-7693

Abstract

The Kodak Digital Science OD System 2000E Automated Disk Library (ADL) Base
Module and write-once drive are being developed as the next generation commercial
product to the currently available System 2000 ADL. Under government sponsorship
with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) sub-
systems compatible with the Kodak Digital Science ODW2S5 drive architecture, which
will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB)
WORM media and 15 GB erasable media. In an OD System 2000E ADL configuration
with 4 MF drives and 100 total disks with a 50% ratio of WORM and M-O media, 2.0
terabytes (TB) of versatile near line mass storage is available.

Introduction

The architecture of the MF drive is a highly leveraged version of the WORM drive. With
the exception of the MF optical head, MF analog head electronics, and bias field magnet
the drive hardware is unchanged from the commercial WORM design. The MF analog
electronics condition the M-O readback signals such that when they are forwarded to
digitizing electronics, they are compatible with WORM signals, thereby prese ving a
majority of the hardware architecture.

The MF optical head has a 680 nanometer wavelength laser and 0.55 numerical aperture
lens, which provide a 0.7 micron minimum mark size. The signal balancing capabilities
in the MF analog electronics reduce effects of power variations and media birefringence.
At 12 meters per second using an optimum record power of 5 milliwatts, a narrow band
carrier-to-noise-ratio greater than 56 dB has been obtained.

The M-O media is fabricated on the same 356 millimeter diameter aluminum substrate as
the commercial WORM media. While this approach required technological advances in
MF head electronics because of the polycarbonate coversheet birefringence and the char-
acteristic media noise of the underlayers, the benefits of this approach are numerous.
Utilization of existing manufacturing processes and fabrication equipment positively af-
fect quality, process yield, and unit costs for a new media offering. Furthermore, the
commercial cartridge hardware provides turn-key mechanical compatibility with existing
drive and robotic library designs.

As manufactured, the media is featureless. Tracking pads and sector headers are servo
written as part of the manufacturing process. The featureless characteristic allows the

627

erasable media to be re-formatted to accommodate performance improvements in track
pitch and capacity as they become available later in the product lifecycle.

The ODW2S drive uses the Intel 960 processor and employs an object orientated design.
Therefore, adding the erasable functionality to the WORM baseline is straightforward.
The ODW2S drive is field upgradable to MF by means of an optical head change and
firmware download through a PCM/CIA card.

Kodak Digital Science ODW25 Optical Drive Architecture

The System 2000E is an evolutionary product based upon the current Kodak Optical
Storage Products’ large format high capacity automated disk library, the System 2000.
The "E" connotation refers to the enhanced capabilities that are provided via the next
generation ODW?25 optical drive,. The drive is fully backward compatible with Kodak's
pre-existing 14" media types, can be readily installed into existing System 2000 libraries
and features dual write/read heads, increased data rates, reliability and media capacity.
The drive size and weight has been reduced to support a four-drive library configuration
providing additional throughput and back-up capability.

The ODW2S5 drive has been engineered with a platform architecture to facilitate future
enhancements and features. Kodak's 14" optical media format was designed to be "dual-
head" ready from the onset by formatting opposing spirals on either side of the disk. The
platform architecture concept was applied to both the drive and media to support a prod-
uct family commensurate with the "Technology Roadmap” shown in Figure 1. The strat-
egy behind the platform concept was to develop a "system” design that would provide
both a hardware and software base which could be enhanced to support additional fea-
tures and functions requested by the customer in a timely, cost effective manner.

1 1995 (] o 1L ‘ e 2000

S eus—)
e | — |G o (=)}
Characteristios
Data Rate womas o | 2-eman a-snve [_gal 16-20MBn
Fechmobogies
Laver WaveslangD s80nm 235am jJemuae | 415am
Hasd OMoc#ve Lans HA os g [X~ o7
Dats Encoting PWM (MFM) b | PRI (1.7) —pl PRAML
Ousta Channst & Notse Crese-min e Setpr -
Thesshok Cancellaion 1 Resoiution
[
Otsh Farmm 2CAvV
0t Racending Layars per side | (1 Layer) 2 Layers)

Figure 1. 14” Optical Storage Technology Roadmap

The ODW?25 disk drive features a variety of innovative hardware and software techniques
intended to improve reliability and flexibility for future applications. The block diagram
shown in Figure 2 illustrates the major subsystems of the drive.

628

‘I!IAL.‘HItg:L g SENSORS

— i e DISK M

daiddoid SCS/ | DIGITAL IF NG u

DATA ELECTRONICS L

BUFFER BOARD T

i

P

L

E

960 HD X

PROCESSOR

E

R

w |)

LECTRONICS ;
SVSTEMGONTROL ' e
ELECTRONICS | HEADIACCESS
BOARD I/F ELECTRONICS |
L . ! BOARD '_
I

The System Control Electronics (SCE) circuit board contains the Intel 1-960 microproc-
essor which controls the entire machine, performs error detection and correction on data
read back from the media in the drive and handles all communication with the host
through a SCSI interface. The Digital Interface Electronics board (DIE) is responsible
for all the machine control and /O not associated with the optical head. These functions
include media handling, disk clamping, temperature sensors, monitoring power supply
voltages, and more. The Spindle Analog Electronics board (SAE) delivers the required
power to the spindle motor and processes the hall sensor data to provide velocity feed-
back to the servo. The spindle motor is controlled utilizing a pulse width modulated
motor driver under software servo control. The Head/Access Interface Board (HIE)
processes all signals coming to, or going from, the optical heads. A multiplexer approach
switches between the top and bottom heads allowing for near instantaneous access 1o ei-
ther side of the disk. Each head is driven by its own carriage motor and motor driver to
facilitate access to data on either side of the disk without external robotics. The present
HIE contains only one programmable data channel and data channel controller. Future
generations of the ODW2S drive will employ simultaneous access to both sides of the
media platter.

Sensors integrated into the media handling robotics determine the media type upon inser-
tion into the drive. The Intel I-960 microprocessor then "programs” the gate arrays that
comprise the data channel into the proper format for that media capacity. Therefore, fu-
ture media upgrades and capacity increases can be accommodated with existing hard-
ware. Also, the data channel is fully backward compatible with previous media types.

Control of the various servo subsystems required by the optical drive to maintain media

velocity, access position, focus, tracking and laser power is critical to obtain performance
expectations. The machine servo control systems must meet product specifications over

629

a wide operating range. The ODW2S5 drive has utilized a digital servo system, which is
controlled by the 1-960 processor. These software servos provide both effective machine
control and flexibility. The microprocessor samples the servo error signals from the opti-
cal head and can "tune” itself to provide optimum performance, something that cannot be
accomplished with conventional analog implementations. Modifications to the optical
head and head electronics required for future performance upgrades may be accommo-
dated by "reprogramming” the servo functions without changing hardware in the drive.
The software servo controls have improved diagnostic ‘capability i...d reliability via the
reduction in the number of electronic components required to operate the optical head.

The Error Detection and Correction (EDAC) algorithm employed by the drive is also
coded in software. This concept allows real-time access to byte error rate measurement,
improves reliability and lowers cost by eliminating the need for expensive ASIC's and
logic arrays. The software EDAC subsystem can be easily modified for future formats as
EDAC strategies change as a result of increased packing densities.

The ODW2S5 drive platform was conceived to provide optimum performance to the cus-
tomer and maximum flexibility to allow for future upgrades without complete hardware
redesign. The platform concept will protect the customer's investment in hardware and
ease the integration of future features. The current drive/media system will operate at a
write/read data rate of 1.5 to 2.5 megabytes per second per optical head depending upon
the media type (capacity). The media is manufactured with a zoned constant angulz. ve-
locity (ZCAV) format, which provides the most effective comp .omise between access
time and media capacity. The ODW2S5 drive will utilize all previous media types manu-
factured by Kodak, 6.8 GB (read only), 10.2 GB, and 14.8 GB, as well as the upcoming
25 GB platters and beyond with additional firmware upgrades. With future performance
enhancement in mind, each drive was equipped with independent access systems for e.:. 1
side of the disk. This will facilitate future enhancements to enable simultaneous access .0
both sides of the disk which will, in effect, double both the write and readback data rates
without substantial hardware modifications to the drive. The ODW25 drive with the
2000E automated library will propel the user and the optical storage technology into the
21st century.

Rome Laboratory Erasable Optical Progtam
Program Overview

The objective of the Rome Laboratory Contract (# F30602-94-C-0047) is to develop
erasable optical recording hardware and media subsystems for integration into Kodak’s
commercial large format drive and library system. The system portrayed in Figure 3 will
be delivered to the Air Force and integrated with other storage devices (magnetic disk
and magnetic tape) as part of a hierarchical storage management (HSM) system. Large
file size intelligence data processing and mission planning operations will be demon-
strated using the HSM solution.

630

ol

System 2000E ADL
Era able Module

S stem ﬁOOE
ADL Base Module

_Figure 3: Rome Laboratory System Configuration

The approach employed in the program is to design the erasable subsystems utilizing
and/or leveraging the commercial write-once design such that an offering of a commer-
cial erasable drive in the future will require a ininimum level of engineering work. Thus,
the engineering task focus areas under development including: (1) the optical head; (2)
analog conditioning/processing elecironics; (3) servo written media format; and (4)
high-level SCSI interface command and control software all have significant linkages to
the commercial product family. Low-level servo control for laser writing and reading,
focus, and tracking are aimed specifically at the MF head and erasable media.

Expanded detail of the technology development work and results obtained to dcte are
contained in the following sections.

Magneto-Optical Media

Here we describe the overall disk structure, characterization of the individual layers, and
optimization of the optical stack.

Disk Structure

A new simple trilayer disk structure was used. The disk structure, Al Substrate/Ti re-
flecting layer/MO layer/AIN antireflection layer, eliminates the second dielectric in the
conventional quadrilayer structure, while essentially maintaining its performance. Also, it
eases some of the tight manufacturing tolerance limits involved in the quadrilayer struc-
ture. Ti meta! layer can be deposited more easily and at a significantly higher rate than its
dielectric counterparts, e.g., AIN or Si3Ng4. Figure 4 contains a side view detail of the
MO disk structure.

631

Ll Loy
Ax
Al-N relecine layer
MO recorcing layer
11 reflacting/protecing layer

NN AR
A AN N AN A A A AT A A A AP AV AP
NN NN . A YA TR YAY
/s s o AMINUM SUDStAtR, s
AN YA S S LS LY YEIE VA YA A YA Y
PN A N N N A NN NN NN NN
AT W W, W W, T . O . SO L . T Y

Ti reflocting/protecting layer
MO recording layer
Al-N dhelectnc layer
Air
/ Coversheet '/

Figure 4. MO Disk Structure Side View

Magneto-optic media was fabricated using a modified Balzers LLS-801 sputter deposi-
tion system. The sputter deposition is carried out using three cathodes for depositing a Ti
reflector layer, a TbFeCo-based MO layer, and the AIN dielectric layer. During deposi-
tion, the substrate is rotated a.ound an axis perpendicuiar to the sputtering cathode using
a turn table affixed to the indexing drum. In this way, all three layers are deposited in
sequence with no vacuum break. Subsequently, a protective polycarbonate coversheet is
attached and the disk is cartridged identically to the ODW25 product.

MO Layer Characterization

Recording Lay. - The recording layer composition, thickness, and deposition conditions
were chosen to provide the optimal combination of signal quality, recording power, and
environmental stability. The sputtering pressure and film composition were adjusted for
a coercivity less than about 10 kOe to enable static room temperature disk erasure using a
large area electromagnet; this is a much faster method of initialization compared to dy-
namic crasure using a focused optical stylus. The circumferential variation in recording
layer properties was negligible due to the rotating substrate motion, and the radial varia-
tion in thickness was held within +5% using a specially designed mask. Additions of
small amounts of Zr and Pd. have been shown to enhance the intrinsic enviconmental sta-
bility and writing sensitivity of the MO layer.

Dielectric Laver. An AIN diclectric layer was used to optimize the Kerr rotation and re-
flectivity of the optical stack and, importantly, o provide corrosion protection for the MO
layer. It was deposited by DC rcactive sputtering of an Al target in an Ar and N 2 atmos-
phere. The reactive AIN sputtering process involves feedback control of the N3 flow to
maintain constant current at constant nressure. The AIN mec: ical and optical proper-
tics. as well as thickness uniformity - critically important for the performance of the
disk. Preparation of low stress an. @ . .-free AIN layers is essential for providing long-
term corrosion protection of the oxidation susc:ptible MO layer. AIN films with opti-

632

inum propertics werc obtained by controlling the sputtering power. Ar:N3 pressure ratio
and total sputtering pressure. A radial thickness variation of less than £5% was obtained.
The measured refractive index at 680 nm for AIN is n + ik = 2.06 +10.01. The low coef-
ficient of absorption k = 0.01 is desirable for efficient optical performance.

Reflector Layer. Ti metal was used as a reflecting layer. Ti metal has low thermal cow
ductivity so in addition it acts as a thermal barrier between the MO layer and the surface
smoothed aluminum substrate, thus improving the writing sensitivity of the disk. The Ti
layer also piovides corrosion protection for the MO media from the organic surface
smoothing material. Its thickness uniformity was within 5%, similar to the MO and di-
electric layers. An additional bencficial effect of the Ti underlayer was to enhance the
coercivity and squarencss of the Kerr hysteresis loop, advantageous for low disk record-
ing noise.

Optimization of Optical Stack. The multilayer stack was designed to obtain adequate fig-
ure-of-merit (reflec.vity times Kerr rotation) subject to practical constraints on reflectiv-
ity and corrosion piotection. Several small coupons were made with varying thickness of
AIN MO, and Ti layers. Figure 5 show variations of reflectivity R, Kerr rotation 6y,
and figure-of-merit ROy, plotted as a function of AIN layer thickness. The optimal com-
bination of figure-of-merit, reflectivity, and passivation was obtained for SO nm Ti / 45
nm MO / 80 nm AIN. Several full structure disks were fabricated. A lower thickness for
the MO and Ti layers was found to give higher writing sensitivity if desired. Also, it was
found that the CNR performance was quite insensitive to AIN thickness, demonstratine
the robustness of the optical stack design.

2 St

- - - - = w,__.'_-‘-- - e a —
i

—

" i Bgos wemn
{
L A . — e —— _.: e
- = = AN s (A} - " -

jonee S Dererds (0BG TN, Kerr rotation, and figure-of-merit on AIN
|, . layer thickness.

633

Media Keeping

A hife test program was designed and carried out to characterize the media shelf hife for
two recording layer composinons, TbFeCo and TbFeCoZrPd. The fabrication equip-
ment, process, and optical stack structure were identical to those intended for final disk
production. Results to date. bused on static measurements of coupon samples, indicate
exceptional environmental stability for both compositions. In particular, no change in
Kerr rotation and reflectivity have been detected after exposure to 70°C/85% RH,
90°C/17% RH, or 32°CH0% RH for six weeks.

Multifunction Optical Head and Analog Electronics

A schematic of the multifunction optical head is shown in Figure 6. The head is lever-
aged from the current System 2000 WORM optical head and its properties are summa-
rized in Table 1.

The 30 mW SDL laser diode has undergone extensive testing and has been shown to be
extremely rehable with very low relative '~ensity noise. The laser is collimated with 7.5
mm focal length, precision glass molded (Kodak A375) lens. The optical stack uses the
same glass types as our commercial product to provide achromatic beam expansion. The
coating on the partial PBS was redesigned to maximize the MO data signal and provide
an acceptable head efficiency as described in Table 1. A tumning prism reflects the beam
up to the 0.55 numerical aperture (NA) molded glass objective lens. A 1.1 mm cover
plate and the 90 um coversheet for both the MO and WORM media packages compen-
sates for the lens design substrate thickness of 1.2 mm.

Dot foarue .. B i
Forus Delacitr U Ceorn £ yperder
Beamspitior 8
Fps 048810

Tracking Tiata Py] EK Aa7s
Datectol s & . Cotlimanng
Ltk oo

SO0 880 rn
- Laner Dirdte
Soit Del
TrackingData Detecioy

Figure 6. Multifunction 680 nm, 0.55 NA Optical Head

Table 1 Properties of 680-mm Multifunction Optical Head

14” MO or WORM o
* " Substrate _ |
I SpoiSzeFWHM | 070um |
I Numerical Aperure | 055 |
| HeadEfficiency 1 30% |
| Power ot Disk (Maximum): | 8mW
.. Focus Method [DualHalf Aperure |

Tracking Method | FullAperure Push-Pull |

The return path is designed to maximize the data and tracking detection signal-to-
noise ratio. The retumn beam is reflected by the partial polarization beamsplitter #1. The
dual half aperture focus detector receives = 20% of the p-polarization component of the
return beam. The reflected light from beamsplitter # 2 is directed though a waveplate that
corrects for media and head phase shifts and results in approximately equal intensity from
the two beams from the polarization beamsplitter (analyzer). The two beams are brought
to line foci (elongated in the cross track direction) on a pair of bi-cell detectors that pro-
vide signals A, B, C, and D for tracking ervor and data detection. These signals are proc-
essed by the muhifunction dataftracking electronics as shown in Figure 7. The push pull
tracking signals are given by:

WORMTES=(A+0)-B+D) (1)
MOTES=(A+D)-(B+C) (4]

where the tracking error signal is sampled from the diffraction effects over servo written
tracking pads (long data marks). The data signals are given by:

WORM DATA=(A+B)+(C+D) (3)

MODATA= (A+B)-(C+D) (4)
The signal balancer electronics utilize variable gain amplifiers t¢ ‘nimize the effects of
birefringence and laser power fluctuations on the data signals R! .nd RF B before the

final sum (WORM) and difference (MO) are generated according equations 3 and 4.
This additional step is required with a bi-refringent coversheet in a multifunction system.

638

|
|
i

.v_%f
I

VYY

Fi 7. Schematic of the multifunction data/tracking detection electronics

Dynamic Testing

The main thrust of the dynamic testing is to easure that the WORM performance is simi-
lar to the production WORM system and that the MO system exceeds the contract re-
quirements for data integrity, capacity (> 10 Gigabyte/Disk), and data rate (>! Mega-
bytes/sec). The fundamental performance of the system with the two media types is il-
lustrated in Figure 8. The readout spectrum of the WORM system shows a carrier-to-
noise ratio in a 30 KHz bandwidth (CNR) of 57.0 dB. This was recorded at the second
harmonic minimum, with an optimum recording power (ORP) of 5.1 mW. By compari-
son, the MO system shows a CNR of 56.5 dB at an ORP of 5.0 mW. The WORM system
is dominated by media noise at low frequencies and laser noise at higher frequencies,
while the MO system is dominated by electronic and shot noise. Thus the MO has a
whiter noise signature and a lower integrated signal-to-noise ratio. The similarity of the
ORP and CNR for WORM and MO is important to a multifunction system design.

636

18
'-4
-194
£ _oed
£ -2
o
-30-
g
E 40
4
@ ‘“’:‘t::J
60 :
-79 T
1 2

Frequer ‘v (MHz2)

Figure 8. The readout spectrum is shown for WORM and MO readout for a 2.5
MHz tone at a media velocity of 12 m/s. The recording power is 5.1 mW for
WORM and 5.0 mW for MO. The read powers are 1.0 and 1.5 mW for WORM and
MO readout respectively.

This system has also been integrated with the System 2000E read channel. The figure of
merit percent phase margin (% PM) indicates the amount of the bit window remaining
after noise and mark length errors are considered for a raw bit error rate of 10°. Com-
mercial goals are typically 20-50% PM depending on the systems error budget. For the
multifunction drive with a worst case pattern at the conditions of 12 m/sec, MFM encod-
ing, and a raw data rate of 10 Megabits/sec, the WORM system has a % PM of 70% con-
sistent with our future 25 Gigabyte/Disk commercial product and the MO system has a %
PM of 45%, which will allow the contract specifications to be met.

Ultrahigh Capacity Optical Disk (UCOD) Program

The National Storage Industry Consortium (NSIC) is leading an Advanced Technology
R&D project with the Department of Commerce for the development of an optical data
storage syst=m that will place U.S. technology at the forefront of commercial data storage
markets threugnout the remainder of this century and well into the next century. The
program teams Eastman Kodak Company, a leading supplier of high-end optical data
storage libraries, SDL, Inc., the world-wide leader in high-power laser diode manufac-
turing, and Carnegic-Mellon University, a leading research facility in optical storage in a
highly focused program to produce an optical data storage system with the following at-
tributes:

e | Terabyte storage capacity, a 40 x increase over current technology

o 30 Megabyte/sec data transfer rate, a 10 x increase

637

The technology developed will be rapidly incorporated into products at both Kodak and
SDL throughout the program, such that the program will serve to strengthen and solidify
the technical position of many U.S. industries, including high-definition television
(HDTV), medical and library data storage systems, biotechnology, and visible laser diode
systems.

A four-year research and development program (Fiscal Year 1996-1999) with four major
technologies is underway. The four technology areas are: (1) advanced laser sources, (2)
multilayer media technology, (3) advanced channel coding techniques, and (4) high nu-
merical aperture optics development. The development is being pursued in three major
phases. An assessment phase will concentrate on gathering data and building integrated
models. The experimental phase will include ta-geted work on the four technology ele-
ments discussed above using refined goals from the assessment. The final stage is the
design, fabrication, and testing of the a prototype system. The technical challenges in
this development are listed in the Table 2.

Table 2: Research Task/Barrier/Approach Matrix

Ulra-thin film performance Self passivation, new materi-
als

Crystal damage Fabrication, Doubling Method

High NA Objective Aberration Tolerances Molded precision glass

+ High Density Code | SNR Requirements PRML

While the Rome Laboratory (RL) program will provide the first Beta version of Mag-
neto-Optic recording subsystems integrated in a commercial drive platform, the UCOD
program will leverage the RL program and advance state-of-the-art in write-once and
erasable optical recording.

Conclusions

A key component of the "platform approach” of the ODW2S was to provide the capabil-
ity to implement future enhancements with reduced resources and cycle times. The
Rome Laboratory erasable optical project has utilized the platform effectively. The direct
compatibility of the multifunction optical head, media substrate and cartridge, and im-
plementation of featureless servo written formatted media will provide the capability to
commercialize a multifunction drive in the future. The UCOD program will develop new
technology which will continue to efficiently add significant performance improvements
to the ODW?25 platform.

638

References
I. T.W. McDaniel and F.O. Sequeda, Appl. Phys. Commun. . |, 427 (1992).
2. T.K. Hatwar, J. Appl. Phys. 70, 6335 (19¢1).

3. E. C. Gage, S. Beckens, P. Cronkite, S. Dohmeier, D. Kay, M. Meichle, and R.
Metzger, “Low Noise, High Reliability 680 nm Optical Head Enables Robust 14.9 Gi-
gabyte/Disk Product,” SPIE P.oc. Vol. 2514, Optical Data Storage ‘95, eds. G. R. Knight,
H. Ooki, and Y. S. Tyan, p. 129 (1595).

4. D. B. Kay, S. B. Chase, E. C. Gage, and B. D. Silverstein, “Write Noise from Optical
Heads with Non-Achromatic Beam Expansion Prisms,” SPIE Proc. Vol. 1499, Optical
Data Storage ‘91, eds. J. J. Burke, T. A. Shull, and N. Imamura, p. 281 (1991).

5. E. C. Gage and B. J. Bartholomeusz, “Directional Asymmetries due to Write-Laser
Mode Hopping during Optical Recording,” J. Appl. Phys. 69, 569 (1991).

639

REPORT DOCUMENTATION PAGE Fom Approvea

Pubkc rep rg burden for thua collection of inf . to A !hnutm g the time for h \Q data

¢ g and mdm ded and pisting and ‘lhe o' # tion Send ugnrdnohmbwdme&mawmuwum
dlection of d M burden, to Wa s Services, Du for $ and Reports, 12185 Jefierson

Davis Highway Sutte 1204, Aring] VA 22202 4302 and to the Office ol mnﬁmanl and t, Papetwork Reduction Propct {0704- 01 , Wastungton, OC 20503

1. AGENCY USE ON:V (Leave blank) § 2. REPORT DATE ;. Eﬂaﬁl TVPE AND DATES COVERED ‘

September 1996 Conference Publication
R
4. TITLE AND SUBTITLE S. DING NUMBERS

Fifth Goddard Conference on Mass Storage Systems and
Technologies - Volume 11

[e-Autwors) Code 505

Benjamin Kobler and P. C. Hariharan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PEFORMING TJION
REPORT NUMBER

Goddard Space Flight Center

Greenbelt, Maryland 20771 96B00117
9. SPONSORING / MONITORING AGENCY NAME(S) Ai<» ADDRESS (ES) 10. SPONSORING / MONITORING . |
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA CP-3340, Vol . 11

1711, SUPPLEMENTARY NOTES
Kobler. Goddard Space Flight Center, Greenbelt, Maryland;
Hariharan. Systems Engineering and Secunty, Inc., Greenbelt, Maryland

Y YT Ty Yy Ty YT v
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 82

Availability: NASA CASI (301) 621-0390.
43, ABSTRACT (Maximum 200 words)

This document contains copies of those technical papers received in time for publication prior to the
Fifth Goddard Conference on Mass Storage Systems and Technologics he:d September 17 - 19, 1990,
at the University of Maryland, University Conference Center in College Park, Maryland As one of an
ongoing series, this conference continues to serve as a unique medium for the exchange of information
on topics relating to the ingestion and management of substantial amounts of data and the attendant
problems involved This year's discussion topics include storage architecture, database management,
data distribution, file system performance and modeling, and optical recording technology. There will
also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR)
defined in Version S of the Institute of Electnical and Electronics Engineers (IEEE) Reference Model
(RM) In addition, there are papers on specific archiv es and storage products

14. SUBJECT TERMS o 15. NUMBER OF PAGES
Magnetic tape, magnetic disk, optical disk, mass storage, software storage. a0
digital recording, data compression, storage architecture, optical recording, 16. PRICE CODE I

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION Fli t [lif: vl Lol meimass
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
RSN /54U-U1-280-550U —_ - - - - T dudniuau Forfin 298 (ReV Z-8Y) " T

Prescribed by ANSI St 230 18
298.102

fmmm

WSNMW
wmwm .

N --

.u......_

‘ot e -
Mtcmhﬂ = 2

- :u:-.;- = — .

